These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33940818)

  • 1. Unraveling exciton processes in Ir(ppy)
    Sanderson S; Vamvounis G; Mark AE; Burn PL; White RD; Philippa BW
    J Chem Phys; 2021 Apr; 154(16):164101. PubMed ID: 33940818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding charge transport in Ir(ppy)
    Sanderson S; Philippa B; Vamvounis G; Burn PL; White RD
    J Chem Phys; 2019 Mar; 150(9):094110. PubMed ID: 30849896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Luminescence characteristics of PVK doped with Ir(ppy)3].
    Yang SP; Zhang XF; Zhao SL; Xu Z; Zhang FJ; Yang YR; Li Q; Pang XX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):512-6. PubMed ID: 18536401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modeling approach to understanding OLED performance improvements arising from spatial variations in guest:host blend ratio.
    Greenberg M; Sanderson S; White RD; Vamvounis G; Burn PL; Philippa B
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37458342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Ir(ppy)
    Park JW; Cho KH; Rhee YM
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge recombination and exciton annihilation reactions in conjugated polymer blends.
    Howard IA; Hodgkiss JM; Zhang X; Kirov KR; Bronstein HA; Williams CK; Friend RH; Westenhoff S; Greenham NC
    J Am Chem Soc; 2010 Jan; 132(1):328-35. PubMed ID: 19961228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the performance differences between solution and vacuum deposited OLEDs: A computational approach.
    Sanderson S; Vamvounis G; Mark AE; Burn PL; White RD; Philippa BW
    J Chem Phys; 2022 Jun; 156(21):214703. PubMed ID: 35676133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of Triplet Exciton Energy-Transfer Processes in Triplet Sensitizer-Doped Fluorescent Polymers.
    Dey A; Kabra D
    J Phys Chem A; 2019 Jun; 123(23):4858-4862. PubMed ID: 31117594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shorter Exciton Lifetimes via an External Heavy-Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light-Emitting Diodes.
    Einzinger M; Zhu T; de Silva P; Belger C; Swager TM; Van Voorhis T; Baldo MA
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28892200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Overshoot Effect of Doped PhOLED with Transient Electroluminescence.
    Hong XX; Xu Z; Zhao SL; Qiao B; Zhang CW; Weng P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):710-4. PubMed ID: 30148549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Phosphorescent effect of Ir (ppy)3 on the luminescent characteristic of Rubrene].
    Xu HH; Xu Z; Zhang FJ; Zhao SL; Yuan GC; Chen YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1608-11. PubMed ID: 18844171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.
    Andernach R; Utzat H; Dimitrov SD; McCulloch I; Heeney M; Durrant JR; Bronstein H
    J Am Chem Soc; 2015 Aug; 137(32):10383-90. PubMed ID: 26200595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities.
    Guo J; Ohkita H; Benten H; Ito S
    J Am Chem Soc; 2009 Nov; 131(46):16869-80. PubMed ID: 19886624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.
    Raišys S; Kazlauskas K; Juršėnas S; Simon YC
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15732-40. PubMed ID: 27219281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Singlet and Triplet Excitons in a Single Emission Layer: Efficient Fluorescent/Phosphorescent Hybrid White Organic Light-Emitting Diodes.
    Jayabharathi J; Goperundevi G; Thanikachalam V; Panimozhi S
    ACS Omega; 2019 Sep; 4(12):15030-15042. PubMed ID: 31552345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Molecular Ligand Shells on Quantum Dots for Quantitative Harvesting of Triplet Excitons Generated by Singlet Fission.
    Allardice JR; Thampi A; Dowland S; Xiao J; Gray V; Zhang Z; Budden P; Petty AJ; Davis NJLK; Greenham NC; Anthony JE; Rao A
    J Am Chem Soc; 2019 Aug; 141(32):12907-12915. PubMed ID: 31336046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Bimolecular Exciton Kinetics in Controlling the Efficiency of Organic Light-Emitting Diodes.
    Dey A; Kabra D
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38287-38293. PubMed ID: 30298717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of molecular permanent dipole moment on guest aggregation and exciton quenching in phosphorescent organic light emitting diodes.
    Niyonkuru P; Bennett RA; Zachman MJ; Zimmerman JD
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38912679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Organic Vapor Phase Deposition of Thin Films in Light-Emitting Diodes.
    Qu B; Ding K; Sun K; Hou S; Morris S; Shtein M; Forrest SR
    ACS Nano; 2020 Oct; 14(10):14157-14163. PubMed ID: 33016696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Spatial Arrangement of Emitter Molecules in Organic Light-Emitting Diode Films.
    Tonnelé C; Stroet M; Caron B; Clulow AJ; Nagiri RCR; Malde AK; Burn PL; Gentle IR; Mark AE; Powell BJ
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8402-8406. PubMed ID: 28170127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.