These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33940825)

  • 1. Frequency-dependent specific heat in quantum supercooled liquids: A mode-coupling study.
    Das A; Rabani E; Miyazaki K; Harbola U
    J Chem Phys; 2021 Apr; 154(16):164512. PubMed ID: 33940825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural relaxation in quantum supercooled liquids: A mode-coupling approach.
    Das A; Rabani E; Miyazaki K; Harbola U
    J Chem Phys; 2021 Jan; 154(1):014502. PubMed ID: 33412873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tagged particle dynamics in supercooled quantum liquids.
    Das A; Krishnan G; Rabani E; Harbola U
    Phys Rev E; 2022 May; 105(5-1):054136. PubMed ID: 35706274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean-field theory, mode-coupling theory, and the onset temperature in supercooled liquids.
    Brumer Y; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041202. PubMed ID: 15169010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective modes and thermodynamics of the liquid state.
    Trachenko K; Brazhkin VV
    Rep Prog Phys; 2016 Jan; 79(1):016502. PubMed ID: 26696098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation patterns in supercooled liquids from generalized mode-coupling theory.
    Janssen LM; Mayer P; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052306. PubMed ID: 25493795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes.
    De Marzio M; Camisasca G; Rovere M; Gallo P
    J Chem Phys; 2017 Feb; 146(8):084502. PubMed ID: 28249440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mode-coupling theory for supercooled liquids: application to water.
    Fabbian L; Latz A; Schilling R; Sciortino F; Tartaglia P; Theis C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5768-77. PubMed ID: 11970473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhomogeneous mode-coupling theory and growing dynamic length in supercooled liquids.
    Biroli G; Bouchaud JP; Miyazaki K; Reichman DR
    Phys Rev Lett; 2006 Nov; 97(19):195701. PubMed ID: 17155642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical susceptibilities near ideal glass transitions.
    Laudicina CCL; Luo C; Miyazaki K; Janssen LMC
    Phys Rev E; 2022 Dec; 106(6-1):064136. PubMed ID: 36671198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperatively rearranging regions change shape near the mode-coupling crossover for colloidal liquids on a sphere.
    Singh N; Sood AK; Ganapathy R
    Nat Commun; 2020 Oct; 11(1):4967. PubMed ID: 33009399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mode-coupling theory: formulation and applications to normal and supercooled quantum liquids.
    Rabani E; Reichman DR
    Annu Rev Phys Chem; 2005; 56():157-85. PubMed ID: 15796699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent correlations in a supercooled liquid from nonlinear fluctuating hydrodynamics.
    Gupta BS; Das SP; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041506. PubMed ID: 21599168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Heterogeneities in Colloidal Supercooled Liquids: Experimental Tests of Inhomogeneous Mode Coupling Theory.
    Mishra CK; Habdas P; Yodh AG
    J Phys Chem B; 2019 Jun; 123(24):5181-5188. PubMed ID: 31132279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Estimate of the Glass Transition Line of Yukawa One-Component Plasmas.
    Lucco Castello F; Tolias P
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33525346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids.
    Saha D; Joshi YM; Bandyopadhyay R
    Soft Matter; 2014 May; 10(18):3292-300. PubMed ID: 24637644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercooled liquids under shear: theory and simulation.
    Miyazaki K; Reichman DR; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011501. PubMed ID: 15324050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subquadratic wavenumber dependence of the structural relaxation of supercooled liquid in the crossover regime.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    J Chem Phys; 2010 Mar; 132(10):104503. PubMed ID: 20232967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water.
    De Marzio M; Camisasca G; Rovere M; Gallo P
    J Chem Phys; 2016 Feb; 144(7):074503. PubMed ID: 26896991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural relaxation in supercooled water by time-resolved spectroscopy.
    Torre R; Bartolini P; Righini R
    Nature; 2004 Mar; 428(6980):296-9. PubMed ID: 15029190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.