These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33940833)
1. Point defects in crystals of charged colloids. Alkemade RM; de Jager M; van der Meer B; Smallenburg F; Filion L J Chem Phys; 2021 Apr; 154(16):164905. PubMed ID: 33940833 [TBL] [Abstract][Full Text] [Related]
2. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals. Wang F; Han Y J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411 [TBL] [Abstract][Full Text] [Related]
3. Defects in crystals of soft colloidal particles. de Jager M; de Jong J; Filion L Soft Matter; 2021 Jun; 17(23):5718-5729. PubMed ID: 34014242 [TBL] [Abstract][Full Text] [Related]
4. Template-induced crystallization of charged colloids: a molecular dynamics study. Ouyang W; Zou S; Zhong J; Xu S Soft Matter; 2023 Aug; 19(33):6329-6340. PubMed ID: 37564036 [TBL] [Abstract][Full Text] [Related]
5. Direct observation of crystallization and melting with colloids. Hwang H; Weitz DA; Spaepen F Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1180-1184. PubMed ID: 30617077 [TBL] [Abstract][Full Text] [Related]
6. Phase diagrams of hard-core repulsive Yukawa particles. Hynninen AP; Dijkstra M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021407. PubMed ID: 14524973 [TBL] [Abstract][Full Text] [Related]
7. Stiffness of the interface between a colloidal body-centered cubic crystal and its liquid. Hwang H; Weitz DA; Spaepen F Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25225-25229. PubMed ID: 32973094 [TBL] [Abstract][Full Text] [Related]
8. Impact of free energy of polymers on polymorphism of polymer-grafted nanoparticles. Ishiyama M; Yasuoka K; Asai M Soft Matter; 2022 Aug; 18(34):6318-6325. PubMed ID: 35904076 [TBL] [Abstract][Full Text] [Related]
9. Colloidal epitaxy: playing with the boundary conditions of colloidal crystallization. van Blaaderen A; Hoogenboom JP; Vossen DL; Yethiraj A; van der Horst A; Visscher K; Dogterom M Faraday Discuss; 2003; 123():107-19; discussion 173-92, 419-21. PubMed ID: 12638857 [TBL] [Abstract][Full Text] [Related]
10. Crystallization and reentrant melting of charged colloids in nonpolar solvents. Kanai T; Boon N; Lu PJ; Sloutskin E; Schofield AB; Smallenburg F; van Roij R; Dijkstra M; Weitz DA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):030301. PubMed ID: 25871032 [TBL] [Abstract][Full Text] [Related]
11. Kinetic Phase Diagram for Nucleation and Growth of Competing Crystal Polymorphs in Charged Colloids. Gispen W; Dijkstra M Phys Rev Lett; 2022 Aug; 129(9):098002. PubMed ID: 36083657 [TBL] [Abstract][Full Text] [Related]
12. Two-stage crystallization of charged colloids under low supersaturation conditions. Kratzer K; Arnold A Soft Matter; 2015 Mar; 11(11):2174-82. PubMed ID: 25635694 [TBL] [Abstract][Full Text] [Related]
13. Brownian dynamics simulation of the crystallization dynamics of charged colloidal particles. Gu L; Xu S; Sun Z; Wang JT J Colloid Interface Sci; 2010 Oct; 350(2):409-16. PubMed ID: 20673671 [TBL] [Abstract][Full Text] [Related]
14. Point-defect dynamics in two-dimensional colloidal crystals. Libál A; Reichhardt C; Reichhardt CJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011403. PubMed ID: 17358146 [TBL] [Abstract][Full Text] [Related]
15. Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy. Dasgupta T; Edison JR; Dijkstra M J Chem Phys; 2017 Feb; 146(7):074903. PubMed ID: 28228033 [TBL] [Abstract][Full Text] [Related]
16. Formation free energies of point defects and thermal expansion of bcc U and Mo. Smirnov GS; Stegailov VV J Phys Condens Matter; 2019 Jun; 31(23):235704. PubMed ID: 30849770 [TBL] [Abstract][Full Text] [Related]