These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33940912)

  • 1. Substrate vibrations and their potential effects upon fishes and invertebrates.
    Hawkins AD; Hazelwood RA; Popper AN; Macey PC
    J Acoust Soc Am; 2021 Apr; 149(4):2782. PubMed ID: 33940912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine energy converters: Potential acoustic effects on fishes and aquatic invertebrates.
    Popper AN; Haxel J; Staines G; Guan S; Nedelec SL; Roberts L; Deng ZD
    J Acoust Soc Am; 2023 Jul; 154(1):518-532. PubMed ID: 37497961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas.
    Aimon C; Simpson SD; Hazelwood RA; Bruintjes R; Urbina MA
    Environ Pollut; 2021 Sep; 285():117148. PubMed ID: 33962309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates.
    Popper AN; Hice-Dunton L; Jenkins E; Higgs DM; Krebs J; Mooney A; Rice A; Roberts L; Thomsen F; Vigness-Raposa K; Zeddies D; Williams KA
    J Acoust Soc Am; 2022 Jan; 151(1):205. PubMed ID: 35105040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos.
    Roberts L; Elliott M
    Sci Total Environ; 2017 Oct; 595():255-268. PubMed ID: 28384581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthropogenic noise and the bioacoustics of terrestrial invertebrates.
    Raboin M; Elias DO
    J Exp Biol; 2019 Jun; 222(Pt 12):. PubMed ID: 31217253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of particle motion to fishes and invertebrates.
    Popper AN; Hawkins AD
    J Acoust Soc Am; 2018 Jan; 143(1):470. PubMed ID: 29390747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational and acoustic communication in fishes: The overlooked overlap between the underwater vibroscape and soundscape.
    Roberts L; Rice AN
    J Acoust Soc Am; 2023 Oct; 154(4):2708-2720. PubMed ID: 37888943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. North Sea soundscapes from a fish perspective: Directional patterns in particle motion and masking potential from anthropogenic noise.
    Rogers P; Debusschere E; Haan D; Martin B; Slabbekoorn H
    J Acoust Soc Am; 2021 Sep; 150(3):2174. PubMed ID: 34598635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive analysis of the seismic wave fields generated by offshore pile driving: A case study at the BARD Offshore 1 offshore wind farm.
    Bohne T; Grießmann T; Rolfes R
    J Acoust Soc Am; 2024 Mar; 155(3):1856-1867. PubMed ID: 38451135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution to the Understanding of Particle Motion Perception in Marine Invertebrates.
    André M; Kaifu K; Solé M; van der Schaar M; Akamatsu T; Balastegui A; Sánchez AM; Castell JV
    Adv Exp Med Biol; 2016; 875():47-55. PubMed ID: 26610943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of communication signals at the air-water and water-substrate boundaries.
    Lema SC; Kelly JT
    J Comp Psychol; 2002 Jun; 116(2):145-50. PubMed ID: 12083608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The zoocenosis of the Aral Sea: six decades of fast-paced change.
    Aladin NV; Gontar VI; Zhakova LV; Plotnikov IS; Smurov AO; Rzymski P; Klimaszyk P
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2228-2237. PubMed ID: 30484051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive acoustic emissions from particulates in a V-blender.
    Crouter A; Briens L
    Drug Dev Ind Pharm; 2015; 41(11):1809-18. PubMed ID: 25678315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of anthropogenic substrate-borne vibrations on locomotion of the fiddler crab Austruca lactea.
    Joo S; Kim T
    Mar Pollut Bull; 2024 Mar; 200():116107. PubMed ID: 38330812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquatic food-web dynamics following incorporation of nutrients derived from Atlantic anadromous fishes.
    Samways KM; Soto DX; Cunjak RA
    J Fish Biol; 2018 Feb; 92(2):399-419. PubMed ID: 29235101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the underwater acoustics of the world's largest vibration hammer (OCTA-KONG) and its potential effects on the Indo-Pacific humpbacked dolphin (Sousa chinensis).
    Wang Z; Wu Y; Duan G; Cao H; Liu J; Wang K; Wang D
    PLoS One; 2014; 9(10):e110590. PubMed ID: 25338113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of acoustic waves by NMR using a radiofrequency field gradient.
    Madelin G; Baril N; Lewa CJ; Franconi JM; Canioni P; Thiaudiére E; de Certaines JD
    J Magn Reson; 2003 Mar; 161(1):108-11. PubMed ID: 12660117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation and motion produced in isolated living cells by localized ultrasonic vibration.
    Wilson WL; Wiercinski FJ; Nyborg WL; Schnitzler RM; Sichel FJ
    J Acoust Soc Am; 1966 Dec; 40(6):1363-70. PubMed ID: 5975573
    [No Abstract]   [Full Text] [Related]  

  • 20. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates.
    Carroll AG; Przeslawski R; Duncan A; Gunning M; Bruce B
    Mar Pollut Bull; 2017 Jan; 114(1):9-24. PubMed ID: 27931868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.