These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33940929)

  • 1. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications.
    Magnani JS; Montazami R; Hashemi NN
    Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):185-205. PubMed ID: 33940929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties.
    Haynl C; Hofmann E; Pawar K; Förster S; Scheibel T
    Nano Lett; 2016 Sep; 16(9):5917-22. PubMed ID: 27513098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip.
    Lee KH; Shin SJ; Kim CB; Kim JK; Cho YW; Chung BG; Lee SH
    Lab Chip; 2010 May; 10(10):1328-34. PubMed ID: 20445889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear-flow-induced graphene coating microfibers from microfluidic spinning.
    Yu Y; Guo J; Zhang H; Wang X; Yang C; Zhao Y
    Innovation (Camb); 2022 Mar; 3(2):100209. PubMed ID: 35199079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing highly structured polycaprolactone fibers using microfluidics.
    Sharifi F; Kurteshi D; Hashemi N
    J Mech Behav Biomed Mater; 2016 Aug; 61():530-540. PubMed ID: 27136089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Spun Alginate Hydrogel Microfibers and Their Application in Tissue Engineering.
    Sun T; Li X; Shi Q; Wang H; Huang Q; Fukuda T
    Gels; 2018 Apr; 4(2):. PubMed ID: 30674814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hourglass-Shaped Microfibers.
    Shi R; Tian Y; Zhu P; Tang X; Tian X; Zhou C; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29747-29756. PubMed ID: 32501675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.
    Yu Y; Wei W; Wang Y; Xu C; Guo Y; Qin J
    Adv Mater; 2016 Aug; 28(31):6649-55. PubMed ID: 27185309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems.
    Lavin DM; Zhang L; Furtado S; Hopkins RA; Mathiowitz E
    Acta Biomater; 2013 Jan; 9(1):4569-78. PubMed ID: 22902813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.
    Xie R; Xu P; Liu Y; Li L; Luo G; Ding M; Liang Q
    Adv Mater; 2018 Apr; 30(14):e1705082. PubMed ID: 29484717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated fabrication of hydrogel microfibers with tunable diameters for controlled cell alignment.
    Yang Y; Liu X; Wei D; Zhong M; Sun J; Guo L; Fan H; Zhang X
    Biofabrication; 2017 Nov; 9(4):045009. PubMed ID: 28976359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
    Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH
    Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.