These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33941430)

  • 1. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease.
    Liu H; Moore CL
    Trends Biochem Sci; 2021 Sep; 46(9):772-784. PubMed ID: 33941430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent molecular insights into canonical pre-mRNA 3'-end processing.
    Sun Y; Hamilton K; Tong L
    Transcription; 2020 Apr; 11(2):83-96. PubMed ID: 32522085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RBBP6 activates the pre-mRNA 3' end processing machinery in humans.
    Boreikaite V; Elliott TS; Chin JW; Passmore LA
    Genes Dev; 2022 Feb; 36(3-4):210-224. PubMed ID: 35177536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real-time fluorescence assay for CPSF73, the nuclease for pre-mRNA 3'-end processing.
    Gutierrez PA; Baughman K; Sun Y; Tong L
    RNA; 2021 Oct; 27(10):1148-1154. PubMed ID: 34230059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5'-3' exonuclease.
    Yang XC; Sun Y; Aik WS; Marzluff WF; Tong L; Dominski Z
    RNA; 2020 Oct; 26(10):1345-1359. PubMed ID: 32554553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3'-end processing.
    Yang XC; Sabath I; Dębski J; Kaus-Drobek M; Dadlez M; Marzluff WF; Dominski Z
    Mol Cell Biol; 2013 Jan; 33(1):28-37. PubMed ID: 23071092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6.
    Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E
    Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3'-end maturation.
    Kolev NG; Yario TA; Benson E; Steitz JA
    EMBO Rep; 2008 Oct; 9(10):1013-8. PubMed ID: 18688255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An examination of the metal ion content in the active sites of human endonucleases CPSF73 and INTS11.
    Huang J; Liu X; Sun Y; Li Z; Lin MH; Hamilton K; Mandel CR; Sandmeir F; Conti E; Oyala PH; Tong L
    J Biol Chem; 2023 Apr; 299(4):103047. PubMed ID: 36822327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo characterization of the Drosophila mRNA 3' end processing core cleavage complex.
    Michalski D; Steiniger M
    RNA; 2015 Aug; 21(8):1404-18. PubMed ID: 26081560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3'-End processing of histone pre-mRNAs in Drosophila: U7 snRNP is associated with FLASH and polyadenylation factors.
    Sabath I; Skrajna A; Yang XC; Dadlez M; Marzluff WF; Dominski Z
    RNA; 2013 Dec; 19(12):1726-44. PubMed ID: 24145821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs.
    Sullivan KD; Steiniger M; Marzluff WF
    Mol Cell; 2009 May; 34(3):322-32. PubMed ID: 19450530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing.
    Dominski Z; Yang XC; Marzluff WF
    Cell; 2005 Oct; 123(1):37-48. PubMed ID: 16213211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular details of the CPSF73-CPSF100 C-terminal heterodimer and interaction with Symplekin.
    Thore S; Raoelijaona F; Talenton V; Fribourg S; Mackereth CD
    Open Biol; 2023 Nov; 13(11):230221. PubMed ID: 37989222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3.
    Wall RJ; Rico E; Lukac I; Zuccotto F; Elg S; Gilbert IH; Freund Y; Alley MRK; Field MC; Wyllie S; Horn D
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9616-9621. PubMed ID: 30185555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity.
    Eaton JD; Davidson L; Bauer DLV; Natsume T; Kanemaki MT; West S
    Genes Dev; 2018 Jan; 32(2):127-139. PubMed ID: 29432121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the mRNA endonuclease CPSF73 inhibits breast cancer cell migration, invasion, and self-renewal.
    Liu H; Heller-Trulli D; Moore CL
    iScience; 2022 Aug; 25(8):104804. PubMed ID: 35992060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mRNA Polyadenylation Machineries in Intestinal Protozoan Parasites.
    Ospina-Villa JD; Tovar-Ayona BJ; López-Camarillo C; Soto-Sánchez J; Ramírez-Moreno E; Castañón-Sánchez CA; Marchat LA
    J Eukaryot Microbiol; 2020 May; 67(3):306-320. PubMed ID: 31898347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear eIF4E Stimulates 3'-End Cleavage of Target RNAs.
    Davis MR; Delaleau M; Borden KLB
    Cell Rep; 2019 Apr; 27(5):1397-1408.e4. PubMed ID: 31042468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. snRNA 3' End Processing by a CPSF73-Containing Complex Essential for Development in Arabidopsis.
    Liu Y; Li S; Chen Y; Kimberlin AN; Cahoon EB; Yu B
    PLoS Biol; 2016 Oct; 14(10):e1002571. PubMed ID: 27780203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.