BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 33941482)

  • 1. A novel non-viral delivery method that enables efficient engineering of primary human T cells for ex vivo cell therapy applications.
    Kavanagh H; Dunne S; Martin DS; McFadden E; Gallagher L; Schwaber J; Leonard S; O'Dea S
    Cytotherapy; 2021 Sep; 23(9):852-860. PubMed ID: 33941482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing.
    VanderBurgh JA; Corso TN; Levy SL; Craighead HG
    Sci Rep; 2023 Apr; 13(1):6857. PubMed ID: 37185305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Efficient CAR-T Cells via Electroactive Nanoinjection.
    Shokouhi AR; Chen Y; Yoh HZ; Brenker J; Alan T; Murayama T; Suu K; Morikawa Y; Voelcker NH; Elnathan R
    Adv Mater; 2023 Nov; 35(44):e2304122. PubMed ID: 37434421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoinjection: A Platform for Innovation in Ex Vivo Cell Engineering.
    Chen Y; Shokouhi AR; Voelcker NH; Elnathan R
    Acc Chem Res; 2024 Jun; 57(12):1722-1735. PubMed ID: 38819691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells.
    Seki A; Rutz S
    J Exp Med; 2018 Mar; 215(3):985-997. PubMed ID: 29436394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 ribonucleoprotein (RNP) complex enables higher viability of transfected cells in genome editing of acute myeloid cells.
    Cheng Q; Xia J; Wang K; Zhang Y; Chen Y; Zhong Q; Wang X; Wu Q
    Ann Transl Med; 2022 Aug; 10(16):862. PubMed ID: 36111017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.
    Schumann K; Lin S; Boyer E; Simeonov DR; Subramaniam M; Gate RE; Haliburton GE; Ye CJ; Bluestone JA; Doudna JA; Marson A
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10437-42. PubMed ID: 26216948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-viral chimeric antigen receptor (CAR) T cells going viral.
    Balke-Want H; Keerthi V; Cadinanos-Garai A; Fowler C; Gkitsas N; Brown AK; Tunuguntla R; Abou-El-Enein M; Feldman SA
    Immunooncol Technol; 2023 Jun; 18():100375. PubMed ID: 37124148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering.
    Billingsley MM; Singh N; Ravikumar P; Zhang R; June CH; Mitchell MJ
    Nano Lett; 2020 Mar; 20(3):1578-1589. PubMed ID: 31951421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized DNA electroporation for primary human T cell engineering.
    Zhang Z; Qiu S; Zhang X; Chen W
    BMC Biotechnol; 2018 Jan; 18(1):4. PubMed ID: 29378552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic and Nanofluidic Intracellular Delivery.
    Hur J; Chung AJ
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004595. PubMed ID: 34096197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 13. The Past, Present, and Future of Non-Viral CAR T Cells.
    Moretti A; Ponzo M; Nicolette CA; Tcherepanova IY; Biondi A; Magnani CF
    Front Immunol; 2022; 13():867013. PubMed ID: 35757746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing.
    Lissandrello CA; Santos JA; Hsi P; Welch M; Mott VL; Kim ES; Chesin J; Haroutunian NJ; Stoddard AG; Czarnecki A; Coppeta JR; Freeman DK; Flusberg DA; Balestrini JL; Tandon V
    Sci Rep; 2020 Oct; 10(1):18045. PubMed ID: 33093518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells.
    Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X
    Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different Methods of Delivering CRISPR/Cas9 Into Cells.
    Chandrasekaran AP; Song M; Kim KS; Ramakrishna S
    Prog Mol Biol Transl Sci; 2018; 159():157-176. PubMed ID: 30340786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivering CRISPR: a review of the challenges and approaches.
    Lino CA; Harper JC; Carney JP; Timlin JA
    Drug Deliv; 2018 Nov; 25(1):1234-1257. PubMed ID: 29801422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.
    Ren J; Zhao Y
    Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.