These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 33941791)
1. Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna. Liu Q; He G; Wei J; Dong C Sci Rep; 2021 May; 11(1):9418. PubMed ID: 33941791 [TBL] [Abstract][Full Text] [Related]
2. Reactive oxygen species induce sclerotial formation in Morchella importuna. Liu Q; Zhao Z; Dong H; Dong C Appl Microbiol Biotechnol; 2018 Sep; 102(18):7997-8009. PubMed ID: 29959464 [TBL] [Abstract][Full Text] [Related]
3. Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna. He P; Wang K; Cai Y; Hu X; Zheng Y; Zhang J; Liu W Micron; 2018 Jun; 109():34-40. PubMed ID: 29614428 [TBL] [Abstract][Full Text] [Related]
4. Cytological analysis of the effect of reactive oxygen species on sclerotia formation in Sclerotinia minor. Osato T; Park P; Ikeda K Fungal Biol; 2017 Feb; 121(2):127-136. PubMed ID: 28089044 [TBL] [Abstract][Full Text] [Related]
5. ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA. Wang C; Pi L; Jiang S; Yang M; Shu C; Zhou E Fungal Biol; 2018 May; 122(5):322-332. PubMed ID: 29665958 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic evidence for involvement of reactive oxygen species in Liu B; Wang H; Ma Z; Gai X; Sun Y; He S; Liu X; Wang Y; Xuan Y; Gao Z PeerJ; 2018; 6():e5103. PubMed ID: 29938140 [No Abstract] [Full Text] [Related]
7. Artificial cultivation of true morels: current state, issues and perspectives. Liu Q; Ma H; Zhang Y; Dong C Crit Rev Biotechnol; 2018 Mar; 38(2):259-271. PubMed ID: 28585444 [TBL] [Abstract][Full Text] [Related]
8. Sclerotial formation of Polyporus umbellatus by low temperature treatment under artificial conditions. Xing YM; Zhang LC; Liang HQ; Lv J; Song C; Guo SX; Wang CL; Lee TS; Lee MW PLoS One; 2013; 8(2):e56190. PubMed ID: 23437090 [TBL] [Abstract][Full Text] [Related]
9. Superoxide Initiates the Hyphal Differentiation to Microsclerotia Formation of Liu HH; Huang CC; Lin YH; Tseng MN; Chang HX Microbiol Spectr; 2022 Feb; 10(1):e0208421. PubMed ID: 35080446 [TBL] [Abstract][Full Text] [Related]
10. Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum. Yu Y; Jiang D; Xie J; Cheng J; Li G; Yi X; Fu Y PLoS One; 2012; 7(4):e34962. PubMed ID: 22558105 [TBL] [Abstract][Full Text] [Related]
11. Effect of Aging on Culture and Cultivation of the Culinary-Medicinal Mushrooms Morchella importuna and M. sextelata (Ascomycetes). He P; Yu M; Cai Y; Liu W; Wang W; Wang S; Li J Int J Med Mushrooms; 2019; 21(11):1089-1098. PubMed ID: 32450018 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptomics reveals potential genes involved in the vegetative growth of Liu W; Cai Y; He P; Chen L; Bian Y 3 Biotech; 2019 Mar; 9(3):81. PubMed ID: 30800592 [TBL] [Abstract][Full Text] [Related]
13. Opposite Polarity Monospore Genome De Novo Sequencing and Comparative Analysis Reveal the Possible Heterothallic Life Cycle of Liu W; Chen L; Cai Y; Zhang Q; Bian Y Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149649 [No Abstract] [Full Text] [Related]
14. Proteomic Analysis Reveals the Importance of Exudates on Sclerotial Development in Tian J; Chen C; Sun H; Wang Z; Steinkellner S; Feng J; Liang Y J Agric Food Chem; 2021 Feb; 69(4):1430-1440. PubMed ID: 33481591 [No Abstract] [Full Text] [Related]
15. Use of transcriptomic profiling to identify candidate genes involved in Polyporus umbellatus sclerotial formation affected by oxalic acid. Xing YM; Li B; Zeng X; Zhou LS; Lee TS; Lee MW; Chen XM; Guo SX Sci Rep; 2021 Aug; 11(1):17326. PubMed ID: 34462479 [TBL] [Abstract][Full Text] [Related]
16. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum. Chen C; Dickman MB Mol Microbiol; 2005 Jan; 55(1):299-311. PubMed ID: 15612936 [TBL] [Abstract][Full Text] [Related]
17. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. Fan H; Yu G; Liu Y; Zhang X; Liu J; Zhang Y; Rollins JA; Sun F; Pan H Mol Plant Pathol; 2017 Sep; 18(7):963-975. PubMed ID: 27353472 [TBL] [Abstract][Full Text] [Related]
18. Influence of sclerotia formation on ligninolytic enzyme production in Morchella crassipes. Kanwal HK; Reddy MS J Basic Microbiol; 2014 Jul; 54 Suppl 1():S63-9. PubMed ID: 23712903 [TBL] [Abstract][Full Text] [Related]
19. Ca Pan K-Y; Liu H-H; Tseng M-N; Chang H-X Microbiol Spectr; 2024 Jun; 12(6):e0020024. PubMed ID: 38687071 [TBL] [Abstract][Full Text] [Related]
20. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum. Liang Y; Xiong W; Steinkellner S; Feng J Mol Plant Pathol; 2018 Jun; 19(6):1444-1453. PubMed ID: 29024255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]