BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 33942143)

  • 1. SimSpine: A Cost-Effective Spinal Endoscopy Training Prototype for Neurosurgical Residents Skills Training.
    Bedi MS; Raheja A; Katiyar V; Mishra S; Garg K; Narwal P; Ganeshkumar A; Sharma R; Tandon V; Milani D; Servadei F; Suri A; Kale SS
    World Neurosurg; 2023 May; 173():e683-e698. PubMed ID: 36889639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurosurgical simulation models developed in Latin America and the Caribbean: a scoping review.
    Cuello JF; Bardach A; Gromadzyn G; Ruiz Johnson A; Comandé D; Aguirre E; Ruvinsky S
    Neurosurg Rev; 2023 Dec; 47(1):24. PubMed ID: 38159156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of High-Fidelity Simulator Models for Minimally Invasive Spine Surgery in a Resource-Limited Setting: Experience From East Africa.
    Balogun SA; Sommer F; Waterkeyn F; Ikwuegbuenyi C; Bureta C; Hussain I; Kirnaz S; Navarro-Ramirez R; Sullivan V; Gadjradj P; Härtl R
    J Am Acad Orthop Surg Glob Res Rev; 2023 Oct; 7(10):. PubMed ID: 37856389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Model with Feedback Mechanism for Learning Hand-Eye Coordination: A Pilot Study.
    Bajaj J; Yadav YR; Sinha M; Kumar A; Hedaoo K; Ratre S; Parihar V; Swamy NM
    Neurol India; 2024 Mar; 72(2):395-398. PubMed ID: 38817178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal Haptic Simulation for Ventriculostomy Training
    Delbos B; Chalard R; Rocco FD; Leleve A; Moreau R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive Surgical Training in Neuroendoscopy: Real-Time Anatomical Feature Localization using Natural Language Expressions.
    Matasyoh NM; Schmidt R; Zeineldin RA; Spetzger U; Mathis-Ullrich F
    IEEE Trans Biomed Eng; 2024 May; PP():. PubMed ID: 38801697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indian Neurosurgeons at the Forefront: A Comprehensive Exploration of their Pioneering Contributions to Neuroendoscopy.
    Kodeeswaran O; Bajaj J; Priyadharshan KP; Kodeeswaran M
    Neurol India; 2024 Jan; 72(1):4-10. PubMed ID: 38442993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Venous Air Embolism During Endoscopic Third Ventriculostomy.
    Bala R; Pandia MP
    Asian J Neurosurg; 2018; 13(2):431-432. PubMed ID: 29682052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Feasible, Low-Cost, Capsicum and Tomato Model for Endoscopic Sinus and Skull Base Surgery Training.
    Tikka S; Chaithra BG; Sharma SB; Janakiram TN
    Indian J Otolaryngol Head Neck Surg; 2022 Dec; 74(Suppl 3):4565-4570. PubMed ID: 36742779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing an operative step-based typology for improved neurosurgical training assessment.
    Lawson McLean A
    Brain Spine; 2023; 3():101783. PubMed ID: 38021029
    [No Abstract]   [Full Text] [Related]  

  • 11. Current and Future Advances in Surgical Therapy for Pituitary Adenoma.
    Khan DZ; Hanrahan JG; Baldeweg SE; Dorward NL; Stoyanov D; Marcus HJ
    Endocr Rev; 2023 Sep; 44(5):947-959. PubMed ID: 37207359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High fidelity simulation of the endoscopic transsphenoidal approach: Validation of the UpSurgeOn TNS Box.
    Newall N; Khan DZ; Hanrahan JG; Booker J; Borg A; Davids J; Nicolosi F; Sinha S; Dorward N; Marcus HJ
    Front Surg; 2022; 9():1049685. PubMed ID: 36561572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of virtual reality simulators for neuroendoscopy.
    Baby B; Singh R; Suri A; Dhanakshirur RR; Chakraborty A; Kumar S; Kalra PK; Banerjee S
    Neurosurg Rev; 2020 Oct; 43(5):1255-1272. PubMed ID: 31444716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a synthetic 3D-printed simulator for training in neuroendoscopic ventricular lesion removal.
    Licci M; Thieringer FM; Guzman R; Soleman J
    Neurosurg Focus; 2020 Mar; 48(3):E18. PubMed ID: 32114554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsurgical training: vascular control and intraoperative vessel rupture in the human placenta infusion model.
    Gomar-Alba M; Parrón-Carreño T; Narro-Donate JM; Vargas-López AJ; Castelló-Ruiz MJ; García-Pérez F; Guil-Ibáñez JJ; Masegosa-González J
    Acta Neurochir (Wien); 2021 Sep; 163(9):2525-2532. PubMed ID: 34142241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurosurgical training with simulators: a novel neuroendoscopy model.
    Jaimovich SG; Bailez M; Asprea M; Jaimovich R
    Childs Nerv Syst; 2016 Feb; 32(2):345-9. PubMed ID: 26493056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Physical Simulators for Neuroendoscopy Skills Training.
    Baby B; Singh R; Singh R; Suri A; Arora C; Kumar S; Kalra PK; Banerjee S
    World Neurosurg; 2020 May; 137():398-407. PubMed ID: 32014545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroendoscopic training in neurosurgery: a simple and feasible model for neurosurgical education.
    Gomar-Alba M; Parrón-Carreño T; Narro-Donate JM; Vargas-López AJ; Castelló-Ruiz MJ; García-Pérez F; Guil-Ibáñez JJ; Masegosa-González J
    Childs Nerv Syst; 2021 Aug; 37(8):2619-2624. PubMed ID: 33942143
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.