BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33942169)

  • 1. A Two-Pore Physiologically Based Pharmacokinetic Model to Predict Subcutaneously Administered Different-Size Antibody/Antibody Fragments.
    Li Z; Yu X; Li Y; Verma A; Chang HP; Shah DK
    AAPS J; 2021 May; 23(3):62. PubMed ID: 33942169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
    Shah DK; Betts AM
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-pore physiologically based pharmacokinetic model with de novo derived parameters for predicting plasma PK of different size protein therapeutics.
    Li Z; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Jun; 46(3):305-318. PubMed ID: 31028591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Monoclonal Antibody Disposition after Subcutaneous Administration using a Minimal Physiologically based Pharmacokinetic Model.
    Varkhede N; Forrest ML
    J Pharm Pharm Sci; 2018; 21(1s):130s-148s. PubMed ID: 30011390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bottom-Up Whole-Body Physiologically Based Pharmacokinetic Model to Mechanistically Predict Tissue Distribution and the Rate of Subcutaneous Absorption of Therapeutic Proteins.
    Gill KL; Gardner I; Li L; Jamei M
    AAPS J; 2016 Jan; 18(1):156-70. PubMed ID: 26408308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling.
    Hu S; D'Argenio DZ
    J Pharmacokinet Pharmacodyn; 2020 Oct; 47(5):385-409. PubMed ID: 32500362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-pore physiologically based pharmacokinetic model validation using whole-body biodistribution of trastuzumab and different-size fragments in mice.
    Li Z; Li Y; Chang HP; Yu X; Shah DK
    J Pharmacokinet Pharmacodyn; 2021 Oct; 48(5):743-762. PubMed ID: 34146191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Size on Solid Tumor Disposition of Protein Therapeutics.
    Li Z; Li Y; Chang HP; Chang HY; Guo L; Shah DK
    Drug Metab Dispos; 2019 Oct; 47(10):1136-1145. PubMed ID: 31387870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Molecular size on the clearance of antibody fragments.
    Li Z; Krippendorff BF; Shah DK
    Pharm Res; 2017 Oct; 34(10):2131-2141. PubMed ID: 28681164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphysics Modeling and Simulation of Subcutaneous Injection and Absorption of Biotherapeutics: Model Development.
    Zheng F; Hou P; Corpstein CD; Xing L; Li T
    Pharm Res; 2021 Apr; 38(4):607-624. PubMed ID: 33811278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model.
    Zhao L; Ji P; Li Z; Roy P; Sahajwalla CG
    J Clin Pharmacol; 2013 Mar; 53(3):314-25. PubMed ID: 23426855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclonal Antibody Pharmacokinetics in Cynomolgus Monkeys Following Subcutaneous Administration: Physiologically Based Model Predictions from Physiochemical Properties.
    Hu S; Datta-Mannan A; D'Argenio DZ
    AAPS J; 2022 Dec; 25(1):5. PubMed ID: 36456779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins.
    Zou P; Wang F; Wang J; Lu Y; Tran D; Seo SK
    J Control Release; 2021 Aug; 336():310-321. PubMed ID: 34186147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale pharmacokinetic modeling of systemic exposure of subcutaneously injected biotherapeutics.
    Zheng F; Hou P; Corpstein CD; Park K; Li T
    J Control Release; 2021 Sep; 337():407-416. PubMed ID: 34324897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A translational platform PBPK model for antibody disposition in the brain.
    Chang HY; Wu S; Meno-Tetang G; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):319-338. PubMed ID: 31115858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice.
    Shah DK; Balthasar JP
    Int J Pharm; 2014 Apr; 465(1-2):228-38. PubMed ID: 24508555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies in rabbits.
    Bussing D; K Shah D
    J Pharmacokinet Pharmacodyn; 2020 Dec; 47(6):597-612. PubMed ID: 32876799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A minimal physiologically based pharmacokinetic model to study the combined effect of antibody size, charge, and binding affinity to FcRn/antigen on antibody pharmacokinetics.
    Patidar K; Pillai N; Dhakal S; Avery LB; Mavroudis PD
    J Pharmacokinet Pharmacodyn; 2024 Feb; ():. PubMed ID: 38400996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PBPK model for antibody disposition in mouse brain: validation using large-pore microdialysis data.
    Wu S; Le Prieult F; Phipps CJ; Mezler M; Shah DK
    J Pharmacokinet Pharmacodyn; 2022 Dec; 49(6):579-592. PubMed ID: 36088452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcutaneous delivery of monoclonal antibodies: How do we get there?
    Viola M; Sequeira J; Seiça R; Veiga F; Serra J; Santos AC; Ribeiro AJ
    J Control Release; 2018 Sep; 286():301-314. PubMed ID: 30077735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.