These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33942199)

  • 1. Vestibulocollic and Cervicocollic Muscle Reflexes in a Finite Element Neck Model During Multidirectional Impacts.
    Correia MA; McLachlin SD; Cronin DS
    Ann Biomed Eng; 2021 Jul; 49(7):1645-1656. PubMed ID: 33942199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of control strategies for the cervical muscles of an average female head-neck finite element model.
    Putra IPA; Iraeus J; Thomson R; Svensson MY; Linder A; Sato F
    Traffic Inj Prev; 2019; 20(sup2):S116-S122. PubMed ID: 31617760
    [No Abstract]   [Full Text] [Related]  

  • 3. Optimization of Female Head-Neck Model with Active Reflexive Cervical Muscles in Low Severity Rear Impact Collisions.
    Putra IPA; Iraeus J; Sato F; Svensson MY; Linder A; Thomson R
    Ann Biomed Eng; 2021 Jan; 49(1):115-128. PubMed ID: 32333133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of control strategies for VIVA OpenHBM with active reflexive neck muscles.
    Putra IPA; Thomson R
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1731-1742. PubMed ID: 35927540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The occupant response to autonomous braking: a modeling approach that accounts for active musculature.
    Östh J; Brolin K; Carlsson S; Wismans J; Davidsson J
    Traffic Inj Prev; 2012; 13(3):265-77. PubMed ID: 22607249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.
    Hedenstierna S; Halldin P
    Spine (Phila Pa 1976); 2008 Apr; 33(8):E236-45. PubMed ID: 18404093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of muscle activation schemes in a finite element neck model simulating volunteer frontal impact scenarios.
    Correia MA; McLachlin SD; Cronin DS
    J Biomech; 2020 May; 104():109754. PubMed ID: 32224052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.
    Iwamoto M; Nakahira Y
    Stapp Car Crash J; 2015 Nov; 59():53-90. PubMed ID: 26660740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of passive muscle, skin, and adipose tissue mechanical properties on head and neck response in rear impacts assessed with a finite element model.
    Gierczycka D; Rycman A; Cronin D
    Traffic Inj Prev; 2021; 22(5):407-412. PubMed ID: 34037475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model.
    Shateri H; Cronin DS
    Traffic Inj Prev; 2015; 16(7):698-708. PubMed ID: 25664486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.
    Hedenstierna S; Halldin P; Siegmund GP
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2626-33. PubMed ID: 19910765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of pediatric neck response and muscle activation in low-speed frontal impacts.
    Dong L; Mao H; Li G; Yang KH
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1680-92. PubMed ID: 25130495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a detailed human neck finite element model and injury risk curves under lateral impact.
    Meyer F; Humm J; Yoganandan N; Leszczynski A; Bourdet N; Deck C; Willinger R
    J Mech Behav Biomed Mater; 2021 Apr; 116():104318. PubMed ID: 33516127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A human body model with active muscles for simulation of pretensioned restraints in autonomous braking interventions.
    Osth J; Brolin K; Bråse D
    Traffic Inj Prev; 2015; 16():304-13. PubMed ID: 24950131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of muscle activation on neck response.
    Brolin K; Halldin P; Leijonhufvud I
    Traffic Inj Prev; 2005 Mar; 6(1):67-76. PubMed ID: 15823878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of an Active Muscle Simplified Finite Element Human Body Model in a Standing Posture.
    Lalwala M; Devane KS; Koya B; Vu LQ; Dolick K; Yates KM; Newby NJ; Somers JT; Gayzik FS; Stitzel JD; Weaver AA
    Ann Biomed Eng; 2023 Mar; 51(3):632-641. PubMed ID: 36125604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of Neck Muscle Tonus and Posture on Brain Tissue Strain in Pedestrian Head Impacts.
    Alvarez VS; Halldin P; Kleiven S
    Stapp Car Crash J; 2014 Nov; 58():63-101. PubMed ID: 26192950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Contribution of Pre-impact Posture on Restrained Occupant Finite Element Model Response in Frontal Impact.
    Poulard D; Subit D; Nie B; Donlon JP; Kent RW
    Traffic Inj Prev; 2015; 16 Suppl 2():S87-95. PubMed ID: 26436247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a finite element neck model for head-first compressive impacts: Toward the assessment of motorcycle neck protective equipment.
    Nasim M; Cernicchi A; Galvanetto U
    Proc Inst Mech Eng H; 2021 Sep; 235(9):1001-1013. PubMed ID: 34024218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Human Volunteers in Multidirectional, Uni-axial Sled Tests Using a Finite Element Human Body Model.
    Gaewsky JP; Jones DA; Ye X; Koya B; McNamara KP; Gayzik FS; Weaver AA; Putnam JB; Somers JT; Stitzel JD
    Ann Biomed Eng; 2019 Feb; 47(2):487-511. PubMed ID: 30311040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.