BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33942825)

  • 1. Unveiling the phase behavior of C
    Crespo EA; Vega LF; Pérez-Sánchez G; Coutinho JAP
    Soft Matter; 2021 May; 17(20):5183-5196. PubMed ID: 33942825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promising Route for the Development of a Computational Framework for Self-Assembly and Phase Behavior Prediction of Ionic Surfactants Using MARTINI.
    Anogiannakis SD; Petris PC; Theodorou DN
    J Phys Chem B; 2020 Jan; 124(3):556-567. PubMed ID: 31888338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Temperature and Concentration on the Self-Assembly of Nonionic C
    Kroll P; Benke J; Enders S; Brandenbusch C; Sadowski G
    ACS Omega; 2022 Mar; 7(8):7057-7065. PubMed ID: 35252696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the mutual orientation and intermolecular interaction of C12Ex from molecular dynamics simulations.
    Velinova M; Tsoneva Y; Ivanova A; Tadjer A
    J Phys Chem B; 2012 Apr; 116(16):4879-88. PubMed ID: 22448734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved coarse-grain model to unravel the phase behavior of 1-alkyl-3-methylimidazolium-based ionic liquids through molecular dynamics simulations.
    Crespo EA; Schaeffer N; Coutinho JAP; Perez-Sanchez G
    J Colloid Interface Sci; 2020 Aug; 574():324-336. PubMed ID: 32339817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Prediction of the Structure and Viscosity of Aqueous Micellar Solutions of Ionic Surfactants: A Combined Approach Based on Coarse-Grained MARTINI Simulations Followed by Reverse-Mapped All-Atom Molecular Dynamics Simulations.
    Peroukidis SD; Tsalikis DG; Noro MG; Stott IP; Mavrantzas VG
    J Chem Theory Comput; 2020 May; 16(5):3363-3372. PubMed ID: 32268064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating Bilayers of Nonionic Surfactants with the GROMOS-Compatible 2016H66 Force Field.
    Senac C; Urbach W; Kurtisovski E; Hünenberger PH; Horta BAC; Taulier N; Fuchs PFJ
    Langmuir; 2017 Oct; 33(39):10225-10238. PubMed ID: 28832154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean-field coarse-grained model for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer systems.
    García Daza FA; Colville AJ; Mackie AD
    Langmuir; 2015 Mar; 31(12):3596-604. PubMed ID: 25746687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chain architecture and micellization: a mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants.
    García Daza FA; Colville AJ; Mackie AD
    J Chem Phys; 2015 Mar; 142(11):114902. PubMed ID: 25796261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-graining MARTINI model for molecular-dynamics simulations of the wetting properties of graphitic surfaces with non-ionic, long-chain, and T-shaped surfactants.
    Sergi D; Scocchi G; Ortona A
    J Chem Phys; 2012 Sep; 137(9):094904. PubMed ID: 22957591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coarse-grained MARTINI model of polyethylene glycol and of polyoxyethylene alkyl ether surfactants.
    Rossi G; Fuchs PF; Barnoud J; Monticelli L
    J Phys Chem B; 2012 Dec; 116(49):14353-62. PubMed ID: 23137188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence Enhancement of a Cationic Fluorene-Phenylene Conjugated Polyelectrolyte Induced by Nonionic n-Alkyl Polyoxyethylene Surfactants.
    Monteserín M; Burrows HD; Valente AJM; Pais AACC; Di Paolo RE; Maçanita AL; Tapia MJ
    Langmuir; 2017 Nov; 33(46):13350-13363. PubMed ID: 29112441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting behavior of mixtures of water and nonionic polyoxyethylene alcohol.
    Wu CK; Chen LJ
    Langmuir; 2005 Jul; 21(15):6883-90. PubMed ID: 16008400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Molecular Dynamics Simulations of Model Hydrophobically Modified Ethylene Oxide Urethane Micelles.
    Yuan F; Larson RG
    J Phys Chem B; 2015 Sep; 119(38):12540-51. PubMed ID: 26337615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shedding light on the different behavior of ionic and nonionic surfactants in emulsion polymerization: from atomistic simulations to experimental observations.
    Magi Meconi G; Ballard N; Asua JM; Zangi R
    Phys Chem Chem Phys; 2017 Dec; 19(47):31692-31705. PubMed ID: 29165448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained molecular dynamics simulation of the interface behaviour and self-assembly of CTAB cationic surfactants.
    Illa-Tuset S; Malaspina DC; Faraudo J
    Phys Chem Chem Phys; 2018 Nov; 20(41):26422-26430. PubMed ID: 30306164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low Critical Micelle Concentration Discrepancy between Theory and Experiment.
    García Daza FA; Mackie AD
    J Phys Chem Lett; 2014 Jun; 5(11):2027-32. PubMed ID: 26273890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained molecular dynamics simulation of self-assembly and surface adsorption of ionic surfactants using an implicit water model.
    Wang S; Larson RG
    Langmuir; 2015 Feb; 31(4):1262-71. PubMed ID: 25565113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cloud Point of Alkyl Ethoxylates and Its Prediction with the Hydrophilic-Lipophilic Difference (HLD) Framework.
    Zarate-Muñoz S; Boza Troncoso A; Acosta E
    Langmuir; 2015 Nov; 31(44):12000-8. PubMed ID: 26467232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.