These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33942945)

  • 1. Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low-Driving-Force Organic Solar Cells.
    Zhu L; Zhang J; Guo Y; Yang C; Yi Y; Wei Z
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15348-15353. PubMed ID: 33942945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells.
    Han G; Yi Y
    Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell.
    Perdigón-Toro L; Zhang H; Markina A; Yuan J; Hosseini SM; Wolff CM; Zuo G; Stolterfoht M; Zou Y; Gao F; Andrienko D; Shoaee S; Neher D
    Adv Mater; 2020 Mar; 32(9):e1906763. PubMed ID: 31975446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Observation of Increased Free Carrier Generation Owing to Reduced Exciton Binding Energies in Polymerized Small-Molecule Acceptors.
    Zhang J; Guan J; Zhang Y; Qin S; Zhu Q; Kong X; Ma Q; Li X; Meng L; Yi Y; Zheng J; Li Y
    J Phys Chem Lett; 2022 Sep; 13(38):8816-8824. PubMed ID: 36107413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the critical competition between singlet exciton decay and free charge generation in non-fullerene based organic solar cells with low energetic offsets.
    Pranav M; Shukla A; Moser D; Rumeney J; Liu W; Wang R; Sun B; Smeets S; Tokmoldin N; Cao Y; He G; Beitz T; Jaiser F; Hultzsch T; Shoaee S; Maes W; Lüer L; Brabec C; Vandewal K; Andrienko D; Ludwigs S; Neher D
    Energy Environ Sci; 2024 Sep; 17(18):6676-6697. PubMed ID: 39157178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive.
    Lu H; Chen K; Bobba RS; Shi J; Li M; Wang Y; Xue J; Xue P; Zheng X; Thorn KE; Wagner I; Lin CY; Song Y; Ma W; Tang Z; Meng Q; Qiao Q; Hodgkiss JM; Zhan X
    Adv Mater; 2022 Oct; 34(42):e2205926. PubMed ID: 36027579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hole Transfer Originating from Weakly Bound Exciton Dissociation in Acceptor-Donor-Acceptor Nonfullerene Organic Solar Cells.
    Niu MS; Wang KW; Yang XY; Bi PQ; Zhang KN; Feng XJ; Chen F; Qin W; Xia JL; Hao XT
    J Phys Chem Lett; 2019 Nov; 10(22):7100-7106. PubMed ID: 31682127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barrier-Free Charge Separation Enabled by Electronic Polarization in High-Efficiency Non-fullerene Organic Solar Cells.
    Tu Z; Han G; Yi Y
    J Phys Chem Lett; 2020 Apr; 11(7):2585-2591. PubMed ID: 32163716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells.
    Karuthedath S; Gorenflot J; Firdaus Y; Chaturvedi N; De Castro CSP; Harrison GT; Khan JI; Markina A; Balawi AH; Peña TAD; Liu W; Liang RZ; Sharma A; Paleti SHK; Zhang W; Lin Y; Alarousu E; Lopatin S; Anjum DH; Beaujuge PM; De Wolf S; McCulloch I; Anthopoulos TD; Baran D; Andrienko D; Laquai F
    Nat Mater; 2021 Mar; 20(3):378-384. PubMed ID: 33106652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothermic Charge Separation Occurs Spontaneously in Non-Fullerene Acceptor/Polymer Bulk Heterojunction.
    Rijal K; Fuller N; Rudayni F; Zhang N; Zuo X; Berrie CL; Yip HL; Chan WL
    Adv Mater; 2024 Aug; 36(31):e2400578. PubMed ID: 38762779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Separation from an Intra-Moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend.
    Wang R; Zhang C; Li Q; Zhang Z; Wang X; Xiao M
    J Am Chem Soc; 2020 Jul; 142(29):12751-12759. PubMed ID: 32602706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive and Comparative Analysis of Photoinduced Charge Generation, Recombination Kinetics, and Energy Losses in Fullerene and Nonfullerene Acceptor-Based Organic Solar Cells.
    Sharma R; Jain N; Lee H; Kabra D; Yoo S
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45083-45091. PubMed ID: 32900181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of molecular orientations on the energy levels of A-D-A acceptors: implications for the charge separation driving force of organic solar cells.
    Huang M; Han G; Yi Y
    Phys Chem Chem Phys; 2024 Apr; 26(14):10824-10831. PubMed ID: 38523551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration.
    Aplan MP; Munro JM; Lee Y; Brigeman AN; Grieco C; Wang Q; Giebink NC; Dabo I; Asbury JB; Gomez ED
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39933-39941. PubMed ID: 30360072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics.
    Li S; Zhan L; Jin Y; Zhou G; Lau TK; Qin R; Shi M; Li CZ; Zhu H; Lu X; Zhang F; Chen H
    Adv Mater; 2020 Jun; 32(24):e2001160. PubMed ID: 32390241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving Small Exciton Binding Energies in Small Molecule Acceptors for Organic Solar Cells: Effect of Molecular Packing.
    Zhu L; Tu Z; Yi Y; Wei Z
    J Phys Chem Lett; 2019 Sep; 10(17):4888-4894. PubMed ID: 31402673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of charge recombination to triplet excitons in organic solar cells.
    Gillett AJ; Privitera A; Dilmurat R; Karki A; Qian D; Pershin A; Londi G; Myers WK; Lee J; Yuan J; Ko SJ; Riede MK; Gao F; Bazan GC; Rao A; Nguyen TQ; Beljonne D; Friend RH
    Nature; 2021 Sep; 597(7878):666-671. PubMed ID: 34588666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced Charge Transfer and Recombination Dynamics in Star Nonfullerene Organic Solar Cells.
    Chen Z; Zhu H
    J Phys Chem Lett; 2022 Feb; 13(4):1123-1130. PubMed ID: 35080888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonfullerene Acceptors Bearing Spiro-Substituted Bithiophene Units in Organic Solar Cells: Tuning the Frontier Molecular Orbital Distribution to Reduce Exciton Binding Energy.
    Wang K; Jinnai S; Urakami T; Sato H; Higashi M; Tsujimura S; Kobori Y; Adachi R; Yamakata A; Ie Y
    Angew Chem Int Ed Engl; 2024 Aug; ():e202412691. PubMed ID: 39133206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer.
    Chen S; Wang Y; Zhang L; Zhao J; Chen Y; Zhu D; Yao H; Zhang G; Ma W; Friend RH; Chow PCY; Gao F; Yan H
    Adv Mater; 2018 Nov; 30(45):e1804215. PubMed ID: 30276887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.