BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33944677)

  • 1. Efficient and selective adsorption of methylene blue and methyl violet dyes by yellow passion fruit peel.
    Lin H; Chen K; Du L; Gao P; Zheng J; Liu Y; Ma L
    Environ Technol; 2022 Sep; 43(23):3519-3530. PubMed ID: 33944677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super and Selective Adsorption of Cationic Dyes onto Carboxylate-Modified Passion Fruit Peel Biosorbent.
    Chen K; Du L; Gao P; Zheng J; Liu Y; Lin H
    Front Chem; 2021; 9():646492. PubMed ID: 34124000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste.
    Pavan FA; Lima EC; Dias SL; Mazzocato AC
    J Hazard Mater; 2008 Feb; 150(3):703-12. PubMed ID: 17597293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent.
    Pavan FA; Mazzocato AC; Gushikem Y
    Bioresour Technol; 2008 May; 99(8):3162-5. PubMed ID: 17692516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination performance of methylene blue, methyl violet, and Nile blue from aqueous media using AC/CoFe
    Foroutan R; Mohammadi R; Ramavandi B
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19523-19539. PubMed ID: 31077043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of persimmon fruit peel and its biochar for removal of methylene blue from aqueous solutions: thermodynamic, kinetic and isotherm studies.
    Ates A; Oymak T
    Int J Phytoremediation; 2020; 22(6):607-616. PubMed ID: 31833379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable use of low-cost adsorbents prepared from waste fruit peels for the removal of selected reactive and basic dyes found in wastewaters.
    Tolkou AK; Tsoutsa EK; Kyzas GZ; Katsoyiannis IA
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14662-14689. PubMed ID: 38280170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution.
    Zhou L; Huang J; He B; Zhang F; Li H
    Carbohydr Polym; 2014 Jan; 101():574-81. PubMed ID: 24299813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High surface area activated carbon from a pineapple (
    Hapiz A; Jawad AH; Wilson LD; ALOthman ZA
    Int J Phytoremediation; 2024 Feb; 26(3):324-338. PubMed ID: 37545130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Porous Structure-Inspired Lignocellulosic Biosorbent of
    Zhang J; Ji H; Liu Z; Zhang L; Wang Z; Guan Y; Gao H
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of cationic dyes from aqueous solution using polyacrylic acid modified hemp stem.
    Huang W; Xu Y; Chen N; Cheng G; Ke H
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):5568-5581. PubMed ID: 38127237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.
    Cheng CS; Deng J; Lei B; He A; Zhang X; Ma L; Li S; Zhao C
    J Hazard Mater; 2013 Dec; 263 Pt 2():467-78. PubMed ID: 24238475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroalgae of Iridaea cordata as an efficient biosorbent to remove hazardous cationic dyes from aqueous solutions.
    Escudero LB; Smichowski PN; Dotto GL
    Water Sci Technol; 2017 Dec; 76(11-12):3379-3391. PubMed ID: 29236017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of dyes from water using
    Grassi P; Georgin J; S P Franco D; Sá ÍMGL; Lins PVS; Foletto EL; Jahn SL; Meili L; Rangabhashiyam S
    Int J Phytoremediation; 2024; 26(1):82-97. PubMed ID: 37345434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Think before throw: waste chili stalk powder for facile scavenging of cationic dyes from water.
    Panda A; Samal PP; Qaiyum MA; Dey B; Dey S
    Environ Monit Assess; 2024 Jan; 196(2):118. PubMed ID: 38183504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption behavior and mechanism of modified Pinus massoniana pollen microcarriers for extremely efficient and rapid adsorption of cationic methylene blue dye.
    Li D; Sun L; Yang L; Liu J; Shi L; Zhuo L; Ye T; Wang S
    J Hazard Mater; 2024 Mar; 465():133308. PubMed ID: 38134687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.
    Gusmão KA; Gurgel LV; Melo TM; Gil LF
    J Environ Manage; 2013 Mar; 118():135-43. PubMed ID: 23428463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal.
    Ma L; Jiang C; Lin Z; Zou Z
    Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29385041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica.
    Ghorai S; Sarkar A; Raoufi M; Panda AB; Schönherr H; Pal S
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4766-77. PubMed ID: 24579659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste-to-Resource: New application of modified mine silicate waste to remove Pb
    Ghaedi S; Seifpanahi-Shabani K; Sillanpää M
    Chemosphere; 2022 Apr; 292():133412. PubMed ID: 34974049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.