These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 33944896)

  • 1. FT-4202, an oral PKR activator, has potent antisickling effects and improves RBC survival and Hb levels in SCA mice.
    Shrestha A; Chi M; Wagner K; Malik A; Korpik J; Drake A; Fulzele K; Guichard S; Malik P
    Blood Adv; 2021 May; 5(9):2385-2390. PubMed ID: 33944896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease.
    Schroeder P; Fulzele K; Forsyth S; Ribadeneira MD; Guichard S; Wilker E; Marshall CG; Drake A; Fessler R; Konstantinidis DG; Seu KG; Kalfa TA
    J Pharmacol Exp Ther; 2022 Mar; 380(3):210-219. PubMed ID: 35031585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions.
    Abdulmalik O; Pagare PP; Huang B; Xu GG; Ghatge MS; Xu X; Chen Q; Anabaraonye N; Musayev FN; Omar AM; Venitz J; Zhang Y; Safo MK
    Sci Rep; 2020 Nov; 10(1):20277. PubMed ID: 33219275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and reproducible characterization of sickling during automated deoxygenation in sickle cell disease patients.
    Rab MAE; van Oirschot BA; Bos J; Merkx TH; van Wesel ACW; Abdulmalik O; Safo MK; Versluijs BA; Houwing ME; Cnossen MH; Riedl J; Schutgens REG; Pasterkamp G; Bartels M; van Beers EJ; van Wijk R
    Am J Hematol; 2019 May; 94(5):575-584. PubMed ID: 30784099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Sickling During Controlled Automated Deoxygenation with Oxygen Gradient Ektacytometry.
    Rab MAE; van Oirschot BA; Bos J; Kanne CK; Sheehan VA; van Beers EJ; van Wijk R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease.
    Oksenberg D; Dufu K; Patel MP; Chuang C; Li Z; Xu Q; Silva-Garcia A; Zhou C; Hutchaleelaha A; Patskovska L; Patskovsky Y; Almo SC; Sinha U; Metcalf BW; Archer DR
    Br J Haematol; 2016 Oct; 175(1):141-53. PubMed ID: 27378309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Triazole Disulfide Compound Increases the Affinity of Hemoglobin for Oxygen and Reduces the Sickling of Human Sickle Cells.
    Nakagawa A; Ferrari M; Schleifer G; Cooper MK; Liu C; Yu B; Berra L; Klings ES; Safo RS; Chen Q; Musayev FN; Safo MK; Abdulmalik O; Bloch DB; Zapol WM
    Mol Pharm; 2018 May; 15(5):1954-1963. PubMed ID: 29634905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease.
    Demers M; Sturtevant S; Guertin KR; Gupta D; Desai K; Vieira BF; Li W; Hicks A; Ismail A; Gonçalves BP; Di Caprio G; Schonbrun E; Hansen S; Musayev FN; Safo MK; Wood DK; Higgins JM; Light DR
    Blood Adv; 2021 Mar; 5(5):1388-1402. PubMed ID: 33661300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide reduces sickle hemoglobin polymerization: potential role of nitric oxide-induced charge alteration in depolymerization.
    Ikuta T; Thatte HS; Tang JX; Mukerji I; Knee K; Bridges KR; Wang S; Montero-Huerta P; Joshi RM; Head CA
    Arch Biochem Biophys; 2011 Jun; 510(1):53-61. PubMed ID: 21457702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the antisickling compound GBT1118 on the permeability of red blood cells from patients with sickle cell anemia.
    Al Balushi H; Dufu K; Rees DC; Brewin JN; Hannemann A; Oksenberg D; Lu DC; Gibson JS
    Physiol Rep; 2019 Mar; 7(6):e14027. PubMed ID: 30916477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GBT021601 improves red blood cell health and the pathophysiology of sickle cell disease in a murine model.
    Dufu K; Alt C; Strutt S; Partridge J; Tang T; Siu V; Liao-Zou H; Rademacher P; Williams AT; Muller CR; Geng X; Pochron MP; Dang AN; Cabrales P; Li Z; Oksenberg D; Cathers BE
    Br J Haematol; 2023 Jul; 202(1):173-183. PubMed ID: 36960712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate kinase activators: targeting red cell metabolism in sickle cell disease.
    Xu JZ; Vercellotti GM
    Hematology Am Soc Hematol Educ Program; 2023 Dec; 2023(1):107-113. PubMed ID: 38066891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Synthesis, and Evaluation of Allosteric Effectors for Hemoglobin.
    Enakaya NA; Jefferson A; Chew-Martinez D; Matthews JS
    Acc Chem Res; 2023 Jun; 56(11):1279-1286. PubMed ID: 36946781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PF-07059013: A Noncovalent Modulator of Hemoglobin for Treatment of Sickle Cell Disease.
    Gopalsamy A; Aulabaugh AE; Barakat A; Beaumont KC; Cabral S; Canterbury DP; Casimiro-Garcia A; Chang JS; Chen MZ; Choi C; Dow RL; Fadeyi OO; Feng X; France SP; Howard RM; Janz JM; Jasti J; Jasuja R; Jones LH; King-Ahmad A; Knee KM; Kohrt JT; Limberakis C; Liras S; Martinez CA; McClure KF; Narayanan A; Narula J; Novak JJ; O'Connell TN; Parikh MD; Piotrowski DW; Plotnikova O; Robinson RP; Sahasrabudhe PV; Sharma R; Thuma BA; Vasa D; Wei L; Wenzel AZ; Withka JM; Xiao J; Yayla HG
    J Med Chem; 2021 Jan; 64(1):326-342. PubMed ID: 33356244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense red blood cell and oxygen desaturation in sickle-cell disease.
    Di Liberto G; Kiger L; Marden MC; Boyer L; Poitrine FC; Conti M; Rakotoson MG; Habibi A; Khorgami S; Vingert B; Maitre B; Galacteros F; Pirenne F; Bartolucci P
    Am J Hematol; 2016 Oct; 91(10):1008-13. PubMed ID: 27380930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemorheological Alterations and Oxidative Damage in Sickle Cell Anemia.
    Caprari P; Massimi S; Diana L; Sorrentino F; Maffei L; Materazzi S; Risoluti R
    Front Mol Biosci; 2019; 6():142. PubMed ID: 31867341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner.
    Nader E; Conran N; Leonardo FC; Hatem A; Boisson C; Carin R; Renoux C; Costa FF; Joly P; Brito PL; Esperti S; Bernard J; Gauthier A; Poutrel S; Bertrand Y; Garcia C; Saad STO; Egée S; Connes P
    Br J Haematol; 2023 Aug; 202(3):657-668. PubMed ID: 37011913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of methodological standardization for the ektacytometric measures of red blood cell deformability in sickle cell anemia.
    Renoux C; Parrow N; Faes C; Joly P; Hardeman M; Tisdale J; Levine M; Garnier N; Bertrand Y; Kebaili K; Cuzzubbo D; Cannas G; Martin C; Connes P
    Clin Hemorheol Microcirc; 2016; 62(2):173-9. PubMed ID: 26444610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell membrane and density changes under ambient and hypoxic conditions in transgenic mice producing human sickle hemoglobin.
    Reilly MP; Chomo MJ; Obata K; Asakura T
    Exp Hematol; 1994 Jun; 22(6):501-9. PubMed ID: 8187846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.