These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33944944)
1. Draft genome of the Korean smelt Hypomesus nipponensis and its transcriptomic responses to heat stress in the liver and muscle. Xuan B; Park J; Choi S; You I; Nam BH; Noh ES; Kim EM; Song MY; Shin Y; Jeon JH; Kim EB G3 (Bethesda); 2021 Sep; 11(9):. PubMed ID: 33944944 [TBL] [Abstract][Full Text] [Related]
2. TaqMan assays for the genetic identification of delta smelt (Hypomesus transpacificus) and wakasagi smelt (Hypomesus nipponensis). Baerwald MR; Schumer G; Schreier BM; May B Mol Ecol Resour; 2011 Sep; 11(5):784-5. PubMed ID: 21443553 [TBL] [Abstract][Full Text] [Related]
3. Insights into the Gut and Skin Microbiome of Freshwater Fish, Smelt (Hypomesus nipponensis). Park J; Kim EB Curr Microbiol; 2021 May; 78(5):1798-1806. PubMed ID: 33738530 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptome analysis of Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae-Bruchinae) after heat and cold stress exposure. Zhang C; Wang H; Zhuang G; Zheng H; Zhang X J Therm Biol; 2023 Feb; 112():103479. PubMed ID: 36796922 [TBL] [Abstract][Full Text] [Related]
5. Complete mitochondrial genome of the surf smelt Balakirev ES; Romanov NS; Ayala FJ Mitochondrial DNA B Resour; 2018 Sep; 3(2):1071-1072. PubMed ID: 33474419 [TBL] [Abstract][Full Text] [Related]
6. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. Jeffries KM; Connon RE; Davis BE; Komoroske LM; Britton MT; Sommer T; Todgham AE; Fangue NA J Exp Biol; 2016 Jun; 219(Pt 11):1705-16. PubMed ID: 27252456 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic responses to heat stress in rainbow trout Oncorhynchus mykiss head kidney. Huang J; Li Y; Liu Z; Kang Y; Wang J Fish Shellfish Immunol; 2018 Nov; 82():32-40. PubMed ID: 30077801 [TBL] [Abstract][Full Text] [Related]
8. Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Yamashita Y; Miura R; Takemoto Y; Tsuda S; Kawahara H; Obata H Biosci Biotechnol Biochem; 2003 Mar; 67(3):461-6. PubMed ID: 12723591 [TBL] [Abstract][Full Text] [Related]
9. Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck. Kim JM; Lim KS; Byun M; Lee KT; Yang YR; Park M; Lim D; Chai HH; Bang HT; Hwangbo J; Choi YH; Cho YM; Park JE Cell Stress Chaperones; 2017 Nov; 22(6):787-797. PubMed ID: 28634817 [TBL] [Abstract][Full Text] [Related]
10. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. Hayford RK; Serba DD; Xie S; Ayyappan V; Thimmapuram J; Saha MC; Wu CH; Kalavacharla VK BMC Plant Biol; 2022 Mar; 22(1):107. PubMed ID: 35260072 [TBL] [Abstract][Full Text] [Related]
11. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish. Komoroske LM; Connon RE; Jeffries KM; Fangue NA Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983 [TBL] [Abstract][Full Text] [Related]
12. The transcriptome of the marine calanoid copepod Temora longicornis under heat stress and recovery. Semmouri I; Asselman J; Van Nieuwerburgh F; Deforce D; Janssen CR; De Schamphelaere KAC Mar Environ Res; 2019 Jan; 143():10-23. PubMed ID: 30415781 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional response to heat shock in liver of snow trout (Schizothorax richardsonii)--a vulnerable Himalayan Cyprinid fish. Barat A; Sahoo PK; Kumar R; Goel C; Singh AK Funct Integr Genomics; 2016 Mar; 16(2):203-13. PubMed ID: 26810178 [TBL] [Abstract][Full Text] [Related]
14. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki. Bilyk KT; Cheng CH BMC Genomics; 2013 Sep; 14():634. PubMed ID: 24053439 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress. Zhao Y; Hu F; Zhang X; Wei Q; Dong J; Bo C; Cheng B; Ma Q BMC Plant Biol; 2019 Jun; 19(1):273. PubMed ID: 31234785 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep. Li YX; Feng XP; Wang HL; Meng CH; Zhang J; Qian Y; Zhong JF; Cao SX Cell Stress Chaperones; 2019 Nov; 24(6):1045-1054. PubMed ID: 31428918 [TBL] [Abstract][Full Text] [Related]
17. Differential Morpho-Physiological and Transcriptomic Responses to Heat Stress in Two Blueberry Species. Callwood J; Melmaiee K; Kulkarni KP; Vennapusa AR; Aicha D; Moore M; Vorsa N; Natarajan P; Reddy UK; Elavarthi S Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33804571 [TBL] [Abstract][Full Text] [Related]
18. Exposure to heat stress causes downregulation of immune response genes and weakens the disease resistance of Micropterus salmoides. Yang C; Dong J; Sun C; Li W; Tian Y; Liu Z; Gao F; Ye X Comp Biochem Physiol Part D Genomics Proteomics; 2022 Sep; 43():101011. PubMed ID: 35839613 [TBL] [Abstract][Full Text] [Related]