BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33945253)

  • 1. Al-Storage Behaviors of Expanded Graphite as High-Rate and Long-Life Cathode Materials for Rechargeable Aluminum Batteries.
    Guo S; Yang H; Liu M; Feng X; Gao Y; Bai Y; Wu C
    ACS Appl Mater Interfaces; 2021 May; 13(19):22549-22558. PubMed ID: 33945253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tremella-like Vanadium Tetrasulfide as a High-Performance Cathode Material for Rechargeable Aluminum Batteries.
    Han X; Wu F; Zhao R; Bai Y; Wu C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6888-6901. PubMed ID: 36696545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superlattice-Stabilized WSe
    Cui F; Han M; Zhou W; Lai C; Chen Y; Su J; Wang J; Li H; Hu Y
    Small Methods; 2022 Dec; 6(12):e2201281. PubMed ID: 36351768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pencil-Drawing Graphite Nanosheets: A Simple and Effective Cathode for High-Capacity Aluminum Batteries.
    Yu J; Li X; Li N; Wu T; Liu Y; Li C; Liu J; Wang L
    Small Methods; 2022 Apr; 6(4):e2200026. PubMed ID: 35233980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries.
    VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M
    ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
    Wang G; Yu M; Wang J; Li D; Tan D; Löffler M; Zhuang X; Müllen K; Feng X
    Adv Mater; 2018 May; 30(20):e1800533. PubMed ID: 29602214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarity-Switchable Symmetric Graphite Batteries with High Energy and High Power Densities.
    Wang G; Wang F; Zhang P; Zhang J; Zhang T; Müllen K; Feng X
    Adv Mater; 2018 Sep; 30(39):e1802949. PubMed ID: 30133877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configurational Entropy Strategy Enhanced Structure Stability Achieves Robust Cathode for Aluminum Batteries.
    Kang R; Zhang D; Du Y; Sun C; Zhou W; Wang H; Wan J; Chen G; Zhang J
    Small; 2024 Feb; 20(5):e2305998. PubMed ID: 37726243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amorphous Carbon-Derived Nanosheet-Bricked Porous Graphite as High-Performance Cathode for Aluminum-Ion Batteries.
    Zhang C; He R; Zhang J; Hu Y; Wang Z; Jin X
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26510-26516. PubMed ID: 30024719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries.
    Duan W; Husain M; Li Y; Lashari NUR; Yang Y; Ma C; Zhao Y; Li X
    RSC Adv; 2023 Aug; 13(36):25327-25333. PubMed ID: 37622017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities.
    Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J
    Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nb
    Li J; Zeng F; El-Demellawi JK; Lin Q; Xi S; Wu J; Tang J; Zhang X; Liu X; Tu S
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45254-45262. PubMed ID: 36166239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TiP
    Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paving the Path toward Reliable Cathode Materials for Aluminum-Ion Batteries.
    Wu F; Yang H; Bai Y; Wu C
    Adv Mater; 2019 Apr; 31(16):e1806510. PubMed ID: 30767291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance.
    Wang F; Yu F; Wang X; Chang Z; Fu L; Zhu Y; Wen Z; Wu Y; Huang W
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9022-9. PubMed ID: 26716878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Preparation of CuCo
    Zhang Q; Hu Y; Wang J; Dai Y; Pan F
    Chemistry; 2021 Sep; 27(54):13568-13574. PubMed ID: 33843077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries.
    Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.