These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33945260)

  • 21. Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method.
    Patra PP; Kumar GV
    J Phys Chem Lett; 2013 Apr; 4(7):1167-71. PubMed ID: 26282037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of High-Active SERS Cavities in a TiO
    Xu J; Xu Y; Li J; Zhao J; Jian X; Xu J; Gao Z; Song YY
    ACS Sens; 2023 Sep; 8(9):3487-3497. PubMed ID: 37643286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method.
    Wang J; Wu X; Wang C; Rong Z; Ding H; Li H; Li S; Shao N; Dong P; Xiao R; Wang S
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):19958-67. PubMed ID: 27420923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs.
    Yaseen T; Pu H; Sun DW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May; 36(5):762-778. PubMed ID: 30943113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoshell-Enhanced Raman Spectroscopy on a Microplate for Staphylococcal Enterotoxin B Sensing.
    Wang W; Wang W; Liu L; Xu L; Kuang H; Zhu J; Xu C
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15591-7. PubMed ID: 27193082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-embedded Au-Ag core-shell nanoparticles assembled on silicon slides as a reliable SERS substrate.
    Zhang Z; Zhang S; Lin M
    Analyst; 2014 May; 139(9):2207-13. PubMed ID: 24627887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AuNanostar@4-MBA@Au Core-Shell Nanostructure Coupled with Exonuclease III-Assisted Cycling Amplification for Ultrasensitive SERS Detection of Ochratoxin A.
    Huang XB; Wu SH; Hu HC; Sun JJ
    ACS Sens; 2020 Aug; 5(8):2636-2643. PubMed ID: 32786384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ZIF-8-modified Au-Ag/Si nanoporous pillar array for active capture and ultrasensitive SERS-based detection of pentachlorophenol.
    Yan L; Yang P; Cai H; Chen L; Wang Y; Li M
    Anal Methods; 2020 Aug; 12(32):4064-4071. PubMed ID: 32760947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core-shell Au@ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides.
    Tran HN; Nguyen NB; Ly NH; Joo SW; Vasseghian Y
    Environ Pollut; 2023 Jan; 317():120775. PubMed ID: 36455771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications.
    Wang K; Sun DW; Pu H; Wei Q
    Talanta; 2019 Apr; 195():506-515. PubMed ID: 30625576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Total Aqueous Synthesis of Au@Cu
    Lv Q; Min H; Duan DB; Fang W; Pan GM; Shen AG; Wang QQ; Nie G; Hu JM
    Adv Healthc Mater; 2019 Jan; 8(2):e1801257. PubMed ID: 30548216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile synthesis of Fe
    Han D; Li B; Chen Y; Wu T; Kou Y; Xue X; Chen L; Liu Y; Duan Q
    Nanotechnology; 2019 Nov; 30(46):465703. PubMed ID: 31476137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy.
    Zhang Y; Hu Y; Li G; Zhang R
    Mikrochim Acta; 2019 Jun; 186(7):477. PubMed ID: 31250191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility.
    Zheng G; de Marchi S; López-Puente V; Sentosun K; Polavarapu L; Pérez-Juste I; Hill EH; Bals S; Liz-Marzán LM; Pastoriza-Santos I; Pérez-Juste J
    Small; 2016 Aug; 12(29):3935-43. PubMed ID: 27273895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO
    Wei C; Xu MM; Fang CW; Jin Q; Yuan YX; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():262-268. PubMed ID: 28082212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for Surface Enhanced Ram Scattering-Based Detection of Trace Heavy-Metal Ions.
    Bao H; Zhang H; Zhou L; Fu H; Liu G; Li Y; Cai W
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28145-28153. PubMed ID: 31290313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.