These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33945260)

  • 41. Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for Surface Enhanced Ram Scattering-Based Detection of Trace Heavy-Metal Ions.
    Bao H; Zhang H; Zhou L; Fu H; Liu G; Li Y; Cai W
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28145-28153. PubMed ID: 31290313
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au(core)-Pt(shell) nanoparticles supported on GC electrodes.
    Zhang B; Li JF; Zhong QL; Ren B; Tian ZQ; Zou SZ
    Langmuir; 2005 Aug; 21(16):7449-55. PubMed ID: 16042478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Precisely Controllable Core-Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions.
    Jin J; Zhu S; Song Y; Zhao H; Zhang Z; Guo Y; Li J; Song W; Yang B; Zhao B
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27956-27965. PubMed ID: 27673572
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In Situ Monitoring of Hydrogen Peroxide Released from Living Cells Using a ZIF-8-Based Surface-Enhanced Raman Scattering Sensor.
    Jiang L; He CH; Chen HY; Xi CY; Fodjo EK; Zhou ZR; Qian RC; Li DW; Hafez ME
    Anal Chem; 2021 Sep; 93(37):12609-12616. PubMed ID: 34498868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrathin Oxide Layer-Wrapped Noble Metal Nanoparticles via Colloidal Electrostatic Self-Assembly for Efficient and Reusable Surface Enhanced Raman Scattering Substrates.
    Bao H; Zhang H; Zhou L; Liu G; Li Y; Cai W
    Langmuir; 2017 Nov; 33(45):12934-12942. PubMed ID: 29061051
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmonic detection of Cd2+ ions using surface-enhanced Raman scattering active core-shell nanocomposite.
    Thatai S; Khurana P; Prasad S; Kumar D
    Talanta; 2015 Mar; 134():568-575. PubMed ID: 25618709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering.
    Li J; Liu Z; Tian D; Li B; Shao L; Lou Z
    Nanoscale; 2022 Apr; 14(14):5561-5568. PubMed ID: 35343993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Surface Enhanced Raman Spectroscopic Studies on the Coupling Effect of Multilayer Au@SiO2 Film].
    Hu DJ; Zhang XJ; Xu MM; Yao JL; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1262-5. PubMed ID: 26415440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SERS study of surface plasmon resonance induced carrier movement in Au@Cu
    Chen L; Zhang F; Deng XY; Xue X; Wang L; Sun Y; Feng JD; Zhang Y; Wang Y; Jung YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():608-612. PubMed ID: 28886507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles.
    Wang D; Li Z; Zhou J; Fang H; He X; Jena P; Zeng JB; Wang WN
    Nanomicro Lett; 2018; 10(1):4. PubMed ID: 30393653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Early-stage oral cancer diagnosis by artificial intelligence-based SERS using Ag NWs@ZIF core-shell nanochains.
    Xie X; Yu W; Chen Z; Wang L; Yang J; Liu S; Li L; Li Y; Huang Y
    Nanoscale; 2023 Aug; 15(32):13466-13472. PubMed ID: 37548371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Silver-mediated temperature-controlled selective deposition of Pt on hexoctahedral Au nanoparticles and the high performance of Au@AgPt NPs in catalysis and SERS.
    Song C; Sun Y; Li J; Dong C; Zhang J; Jiang X; Wang L
    Nanoscale; 2019 Oct; 11(40):18881-18893. PubMed ID: 31596295
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Key Role of Direct Adsorption on SERS Sensitivity: Synergistic Effect among Target, Aggregating Agent, and Surface with Au or Ag Colloid as Surface-Enhanced Raman Spectroscopy Substrate.
    Xie L; Lu J; Liu T; Chen G; Liu G; Ren B; Tian Z
    J Phys Chem Lett; 2020 Feb; 11(3):1022-1029. PubMed ID: 31931563
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extending the range of metal ions SERS detection using hybrid plasmonic/ZIF-8 particles.
    Pazos-Perez N; Guerrini L
    Talanta; 2024 Jan; 266(Pt 1):124941. PubMed ID: 37478767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing.
    Yang K; Zong S; Zhang Y; Qian Z; Liu Y; Zhu K; Li L; Li N; Wang Z; Cui Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1395-1403. PubMed ID: 31820638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlled Encapsulation of Gold Nanoparticles into Zr-Metal-Organic Frameworks with Improved Detection Limitation of Volatile Organic Compounds via Surface-Enhanced Raman Scattering.
    Lam PK; Liao JJ; Lin MC; Li YH; Wang TH; Huang HK; Hsu YA; Hsieh HP; Kuan PY; Chen CT; Hao GX; Tsung CK; Wu KC; Ĺ utka A; Kinka M; Chou LY; Shieh FK
    Inorg Chem; 2023 Sep; 62(37):14896-14901. PubMed ID: 37678159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy.
    Tian ZQ; Ren B; Li JF; Yang ZL
    Chem Commun (Camb); 2007 Sep; (34):3514-34. PubMed ID: 18080535
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.