These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33945354)

  • 1. Muscle co-contraction in an upper limb musculoskeletal model: EMG-assisted vs. standard load-sharing.
    Sarshari E; Mancuso M; Terrier A; Farron A; Mullhaupt P; Pioletti D
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):137-150. PubMed ID: 33945354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Comput Methods Biomech Biomed Engin; 2015; 18(7):749-59. PubMed ID: 24156405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EMG-driven model of the upper extremity and estimation of long head biceps force.
    Langenderfer J; LaScalza S; Mell A; Carpenter JE; Kuhn JE; Hughes RE
    Comput Biol Med; 2005 Jan; 35(1):25-39. PubMed ID: 15567350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static optimization underestimates antagonist muscle activity at the glenohumeral joint: A musculoskeletal modeling study.
    Kian A; Pizzolato C; Halaki M; Ginn K; Lloyd D; Reed D; Ackland D
    J Biomech; 2019 Dec; 97():109348. PubMed ID: 31668905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new shoulder model with a biologically inspired glenohumeral joint.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Med Eng Phys; 2016 Sep; 38(9):969-77. PubMed ID: 27381499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces.
    Engelhardt C; Malfroy Camine V; Ingram D; Müllhaupt P; Farron A; Pioletti D; Terrier A
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1272-9. PubMed ID: 24697312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model predicting individual shoulder muscle forces based on relationship between electromyographic and 3D external forces in static position.
    Laursen B; Jensen BR; Németh G; Sjøgaard G
    J Biomech; 1998 Aug; 31(8):731-9. PubMed ID: 9796673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An entropy-assisted musculoskeletal shoulder model.
    Xu X; Lin JH; McGorry RW
    J Electromyogr Kinesiol; 2017 Apr; 33():103-110. PubMed ID: 28232284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EMG-driven musculoskeletal model of the shoulder.
    Nikooyan AA; Veeger HE; Westerhoff P; Bolsterlee B; Graichen F; Bergmann G; van der Helm FC
    Hum Mov Sci; 2012 Apr; 31(2):429-47. PubMed ID: 22244106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-contraction in RA patients with a mobile bearing total knee prosthesis during a step-up task.
    Garling EH; Wolterbeek N; Velzeboer S; Nelissen RG; Valstar ER; Doorenbosch CA; Harlaar J
    Knee Surg Sports Traumatol Arthrosc; 2008 Aug; 16(8):734-40. PubMed ID: 18478203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electromyography and joint moment as indicators of co-contraction.
    Knarr BA; Zeni JA; Higginson JS
    J Electromyogr Kinesiol; 2012 Aug; 22(4):607-11. PubMed ID: 22382273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function.
    Wu W; Lee PVS; Bryant AL; Galea M; Ackland DC
    J Biomech; 2016 Nov; 49(15):3626-3634. PubMed ID: 28327299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Expertise on Shoulder and Upper Limb Kinematics, Electromyography, and Estimated Muscle Forces During a Lifting Task.
    Goubault E; Martinez R; Assila N; Monga-Dubreuil É; Dowling-Medley J; Dal Maso F; Begon M
    Hum Factors; 2022 Aug; 64(5):800-819. PubMed ID: 33236930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does enforcing glenohumeral joint stability matter? A new rapid muscle redundancy solver highlights the importance of non-superficial shoulder muscles.
    Belli I; Joshi S; Prendergast JM; Beck I; Della Santina C; Peternel L; Seth A
    PLoS One; 2023; 18(11):e0295003. PubMed ID: 38033021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upper extremity coordination strategies depending on task demand during a basic daily activity.
    Ricci FP; Santiago PR; Zampar AC; Pinola LN; Fonseca Mde C
    Gait Posture; 2015 Oct; 42(4):472-8. PubMed ID: 26282047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG; Besier TF
    J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.