These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33945486)

  • 1. Haptic vs. Visual Neurofeedback for Brain Training: A Proof-of-Concept Study.
    Shabani F; Nisar S; Philamore H; Matsuno F
    IEEE Trans Haptics; 2021; 14(2):297-302. PubMed ID: 33945486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A visual-haptic neurofeedback training improves sensorimotor cortical activations and BCI performance.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6335-6338. PubMed ID: 31947291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptics in Teleoperated Medical Interventions: Force Measurement, Haptic Interfaces and Their Influence on User's Performance.
    Abdi E; Kulic D; Croft E
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3438-3451. PubMed ID: 32305890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey of Pseudo-Haptics: Haptic Feedback Design and Application Proposals.
    Ujitoko Y; Ban Y
    IEEE Trans Haptics; 2021; 14(4):699-711. PubMed ID: 33950845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time neurofeedback is effective in reducing diversion of attention from a motor task in healthy individuals and patients with amyotrophic lateral sclerosis.
    Aliakbaryhosseinabadi S; Farina D; Mrachacz-Kersting N
    J Neural Eng; 2020 Jun; 17(3):036017. PubMed ID: 32375135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A P300-Based Brain-Computer Interface for Improving Attention.
    Arvaneh M; Robertson IH; Ward TE
    Front Hum Neurosci; 2018; 12():524. PubMed ID: 30662400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Decoding of Attentional States Using Closed-Loop EEG Neurofeedback.
    Tuckute G; Hansen ST; Kjaer TW; Hansen LK
    Neural Comput; 2021 Mar; 33(4):967-1004. PubMed ID: 33513324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposal and Evaluation of Visual Haptics for Manipulation of Remote Machine System.
    Haruna M; Ogino M; Koike-Akino T
    Front Robot AI; 2020; 7():529040. PubMed ID: 33501305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Different Visual Feedbacks in User Training on Motor Imagery Control in BCI.
    Zapała D; Francuz P; Zapała E; Kopiś N; Wierzgała P; Augustynowicz P; Majkowski A; Kołodziej M
    Appl Psychophysiol Biofeedback; 2018 Mar; 43(1):23-35. PubMed ID: 29075937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features.
    Han CH; Lim JH; Lee JH; Kim K; Im CH
    Biomed Res Int; 2016; 2016():3939815. PubMed ID: 27631005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of augmentative visual training on audio-motor mapping.
    Hands GL; Larson E; Stepp CE
    Hum Mov Sci; 2014 Jun; 35():145-55. PubMed ID: 24529925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Cost MR Compatible Haptic Stimulation with Application to fMRI Neurofeedback.
    Young KD; Prause N; Lazzaro S; Siegle GJ
    Brain Sci; 2020 Oct; 10(11):. PubMed ID: 33126691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    J Neural Eng; 2019 Oct; 16(6):066012. PubMed ID: 31365911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual Sensory Modality Dominance as an Influential Factor in the Prefrontal Neurofeedback Training for Spatial Processing: A Functional Near-Infrared Spectroscopy Study.
    Sakurada T; Matsumoto M; Yamamoto SI
    Front Syst Neurosci; 2022; 16():774475. PubMed ID: 35221936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study.
    Zilverstand A; Sorger B; Slaats-Willemse D; Kan CC; Goebel R; Buitelaar JK
    PLoS One; 2017; 12(1):e0170795. PubMed ID: 28125735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhythmic Haptic Stimuli Improve Short-Term Attention.
    Zhang S; Wang D; Afzal N; Zhang Y; Wu R
    IEEE Trans Haptics; 2016; 9(3):437-42. PubMed ID: 26915131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Getting Your Hands Dirty Outside the Lab: A Practical Primer for Conducting Wearable Vibrotactile Haptics Research.
    Blum JR; Fortin PE; Al Taha F; Alirezaee P; Demers M; Weill-Duflos A; Cooperstock JR
    IEEE Trans Haptics; 2019; 12(3):232-246. PubMed ID: 31352355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.