These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 33945581)
1. Refractive prediction of four different intraocular lens calculation formulas compared between new swept source optical coherence tomography and partial coherence interferometry. Song MY; Noh SR; Kim KY PLoS One; 2021; 16(5):e0251152. PubMed ID: 33945581 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of two optical biometry devices: high wavelength swept source OCT versus partial coherence interferometry. Szalai E; Csutak A Int Ophthalmol; 2022 Feb; 42(2):627-634. PubMed ID: 34633606 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of a New Swept-Source Optical Coherence Tomography Biometer for IOL Power Calculation and Comparison to IOLMaster. Savini G; Hoffer KJ; Shammas HJ; Aramberri J; Huang J; Barboni P J Refract Surg; 2017 Oct; 33(10):690-695. PubMed ID: 28991337 [TBL] [Abstract][Full Text] [Related]
4. Accuracy of swept-source optical coherence tomography based biometry for intraocular lens power calculation: a retrospective cross-sectional study. An Y; Kang EK; Kim H; Kang MJ; Byun YS; Joo CK BMC Ophthalmol; 2019 Jan; 19(1):30. PubMed ID: 30678658 [TBL] [Abstract][Full Text] [Related]
5. Comparison of refractive outcomes obtained with two swept-source OCT-based optical biometers after cataract surgery: A study of 152 eyes. Agard E; Levron A; Billant J; Douma I; Dot C J Fr Ophtalmol; 2024 Jun; 47(6):104186. PubMed ID: 38663226 [TBL] [Abstract][Full Text] [Related]
6. Comparison of two swept-source optical coherence tomography biometers and a partial coherence interferometer. Yang CM; Lim DH; Kim HJ; Chung TY PLoS One; 2019; 14(10):e0223114. PubMed ID: 31603903 [TBL] [Abstract][Full Text] [Related]
7. Comparison study of the axial length measured using the new swept-source optical coherence tomography ANTERION and the partial coherence interferometry IOL Master. Kim KY; Choi GS; Kang MS; Kim US PLoS One; 2020; 15(12):e0244590. PubMed ID: 33382814 [TBL] [Abstract][Full Text] [Related]
8. Comparison of a new swept-source optical biometer with a partial coherence interferometry. Lee HK; Kim MK BMC Ophthalmol; 2018 Oct; 18(1):269. PubMed ID: 30340561 [TBL] [Abstract][Full Text] [Related]
9. Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices. Omoto MK; Torii H; Masui S; Ayaki M; Tsubota K; Negishi K Sci Rep; 2019 Apr; 9(1):6557. PubMed ID: 31024017 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of intraocular lens power calculation formulas using a swept-source optical biometer. Kim SY; Lee SH; Kim NR; Chin HS; Jung JW PLoS One; 2020; 15(1):e0227638. PubMed ID: 31935241 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry. Huang J; Chen H; Li Y; Chen Z; Gao R; Yu J; Zhao Y; Lu W; McAlinden C; Wang Q J Refract Surg; 2019 Feb; 35(2):115-120. PubMed ID: 30742226 [TBL] [Abstract][Full Text] [Related]
12. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Grulkowski I; Liu JJ; Zhang JY; Potsaid B; Jayaraman V; Cable AE; Duker JS; Fujimoto JG Ophthalmology; 2013 Nov; 120(11):2184-90. PubMed ID: 23755873 [TBL] [Abstract][Full Text] [Related]
13. Comparison of measurements and calculated lens power using three biometers: a Scheimpflug tomographer with partial coherence interferometry and two swept source optical coherence tomographers. Ang RET; Estolano BL; Luz PHC; Umali MIN; Araneta MMQ; Cruz EM BMC Ophthalmol; 2024 Sep; 24(1):410. PubMed ID: 39300358 [TBL] [Abstract][Full Text] [Related]
14. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. Kunert KS; Peter M; Blum M; Haigis W; Sekundo W; Schütze J; Büehren T J Cataract Refract Surg; 2016 Jan; 42(1):76-83. PubMed ID: 26948781 [TBL] [Abstract][Full Text] [Related]
15. Predictive accuracy of partial coherence interferometry and swept-source optical coherence tomography for intraocular lens power calculation. Whang WJ; Yoo YS; Kang MJ; Joo CK Sci Rep; 2018 Sep; 8(1):13732. PubMed ID: 30214016 [TBL] [Abstract][Full Text] [Related]
16. Clinical Evaluation of a New Swept-Source Optical Coherence Biometer That Uses Individual Refractive Indices to Measure Axial Length in Cataract Patients. Tamaoki A; Kojima T; Hasegawa A; Yamamoto M; Kaga T; Tanaka K; Ichikawa K Ophthalmic Res; 2019; 62(1):11-23. PubMed ID: 30889604 [TBL] [Abstract][Full Text] [Related]
17. Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry. Hoffer KJ; Hoffmann PC; Savini G J Cataract Refract Surg; 2016 Aug; 42(8):1165-72. PubMed ID: 27531293 [TBL] [Abstract][Full Text] [Related]
18. Accuracy of SS-OCT biometry compared with partial coherence interferometry biometry for combined phacovitrectomy with internal limiting membrane peeling. Vounotrypidis E; Haralanova V; Muth DR; Wertheimer C; Shajari M; Wolf A; Priglinger S; Mayer WJ J Cataract Refract Surg; 2019 Jan; 45(1):48-53. PubMed ID: 30309772 [TBL] [Abstract][Full Text] [Related]
19. Comparison of two biometers: A swept-source optical coherence tomography and an optical low-coherence reflectometry biometer. El Chehab H; Agard E; Dot C Eur J Ophthalmol; 2019 Sep; 29(5):547-554. PubMed ID: 30295063 [TBL] [Abstract][Full Text] [Related]