These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33945682)

  • 1. Phase-Controlled Synthesis of Pd-Sn Nanocrystal Catalysts of Defined Size and Shape.
    Bueno SLA; Zhan X; Wolfe J; Chatterjee K; Skrabalak SE
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):51876-51885. PubMed ID: 33945682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores.
    Gamler JTL; Leonardi A; Ashberry HM; Daanen NN; Losovyj Y; Unocic RR; Engel M; Skrabalak SE
    ACS Nano; 2019 Apr; 13(4):4008-4017. PubMed ID: 30957486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-Controlled Pd-Sn Nanostructures via Co-Digestive Ripening: Catalytic Performance for Base-Free Oxidation of Benzyl Alcohol.
    Bhatia G; Jagirdar BR
    Chem Asian J; 2023 Jul; 18(14):e202300343. PubMed ID: 37247327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis.
    Li J; Sun S
    Acc Chem Res; 2019 Jul; 52(7):2015-2025. PubMed ID: 31251036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd-In intermetallic nanoparticles with high catalytic selectivity for liquid-phase semi-hydrogenation of diphenylacetylene.
    Chen S; Huang X; Schild D; Wang D; Kübel C; Behrens S
    Nanoscale; 2022 Dec; 14(47):17661-17669. PubMed ID: 36415933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeded Synthesis of Hollow PdSn Intermetallic Nanomaterials for Highly Efficient Electrocatalytic Glycerol Oxidation.
    Huang B; Ge Y; Zhang A; Zhu S; Chen B; Li G; Yun Q; Huang Z; Shi Z; Zhou X; Li L; Wang X; Wang G; Guan Z; Zhai L; Luo Q; Li Z; Lu S; Chen Y; Lee CS; Han Y; Shao M; Zhang H
    Adv Mater; 2023 Sep; 35(35):e2302233. PubMed ID: 37261943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Component-controlled synthesis of Pd
    Guo W; Yang R; Fan J; Xiang X; Du X; Shi N; Bao J; Han M
    RSC Adv; 2024 Jan; 14(2):771-778. PubMed ID: 38174283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.
    Park KH; Lee YW; Kang SW; Han SW
    Chem Asian J; 2011 Jun; 6(6):1515-9. PubMed ID: 21509940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Pd
    Zhou M; Liu J; Ling C; Ge Y; Chen B; Tan C; Fan Z; Huang J; Chen J; Liu Z; Huang Z; Ge J; Cheng H; Chen Y; Dai L; Yin P; Zhang X; Yun Q; Wang J; Zhang H
    Adv Mater; 2022 Jan; 34(1):e2106115. PubMed ID: 34601769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Synthesis of a Porous Pd/Cu Alloy and its Enhanced Performance toward Methanol and Formic Acid Electrooxidation.
    Yan B; Wang C; Xu H; Zhang K; Li S; Du Y
    Chempluschem; 2017 Aug; 82(8):1121-1128. PubMed ID: 31957330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Dependent Disorder-Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu Nanocatalysts.
    Wang C; Chen DP; Sang X; Unocic RR; Skrabalak SE
    ACS Nano; 2016 Jun; 10(6):6345-53. PubMed ID: 27214313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Step, Facile and Ultrafast Synthesis of Phase- and Size-Controlled Pt-Bi Intermetallic Nanocatalysts through Continuous-Flow Microfluidics.
    Zhang D; Wu F; Peng M; Wang X; Xia D; Guo G
    J Am Chem Soc; 2015 May; 137(19):6263-9. PubMed ID: 25932623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid.
    Ho SF; Mendoza-Garcia A; Guo S; He K; Su D; Liu S; Metin Ö; Sun S
    Nanoscale; 2014 Jun; 6(12):6970-3. PubMed ID: 24838646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid.
    Zhao Q; Ge C; Cai Y; Qiao Q; Jia X
    J Colloid Interface Sci; 2018 Mar; 514():425-432. PubMed ID: 29278798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length-tunable Pd
    Li T; Wang Q; Zhang W; Li H; Wang Y; Liu J
    Chem Sci; 2023 Sep; 14(35):9488-9495. PubMed ID: 37712030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance.
    Gamler JTL; Ashberry HM; Skrabalak SE; Koczkur KM
    Adv Mater; 2018 Jul; ():e1801563. PubMed ID: 29984851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermetallic Pd-Sn Nanoparticles on Supports with High Metal Loading Facilitated by the Metal-Metal Bond for High-Performance Cooperative Catalysis.
    Shelte AR; Pratihar S
    Inorg Chem; 2023 Jun; 62(23):9089-9098. PubMed ID: 37259847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles.
    Chen Y; Zhan X; Bueno SLA; Shafei IH; Ashberry HM; Chatterjee K; Xu L; Tang Y; Skrabalak SE
    Nanoscale Horiz; 2021 Mar; 6(3):231-237. PubMed ID: 33480921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial synthesis of Pd-Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction.
    Xu H; Xiao Y; Xu M; Cui H; Tan L; Feng N; Liu X; Qiu G; Dong H; Xie J
    Nanotechnology; 2019 Feb; 30(6):065607. PubMed ID: 30524068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.