These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. Moro F; Böhni H J Colloid Interface Sci; 2002 Feb; 246(1):135-49. PubMed ID: 16290394 [TBL] [Abstract][Full Text] [Related]
3. Analysis of mercury porosimetry for the evaluation of pore shape and intrusion-extrusion hysteresis. Shively ML J Pharm Sci; 1991 Apr; 80(4):376-9. PubMed ID: 1650824 [TBL] [Abstract][Full Text] [Related]
4. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids. Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767 [TBL] [Abstract][Full Text] [Related]
5. Mercury Porosimetry: Contact Angle Hysteresis of Materials with Controlled Pore Structure. Salmas C; Androutsopoulos G J Colloid Interface Sci; 2001 Jul; 239(1):178-189. PubMed ID: 11397062 [TBL] [Abstract][Full Text] [Related]
6. The influence of mercury contact angle, surface tension, and retraction mechanism on the interpretation of mercury porosimetry data. Rigby SP; Edler KJ J Colloid Interface Sci; 2002 Jun; 250(1):175-90. PubMed ID: 16290649 [TBL] [Abstract][Full Text] [Related]
7. Ink-bottle Effect and Pore Size Distribution of Cementitious Materials Identified by Pressurizationâ»Depressurization Cycling Mercury Intrusion Porosimetry. Zhang Y; Yang B; Yang Z; Ye G Materials (Basel); 2019 May; 12(9):. PubMed ID: 31060298 [TBL] [Abstract][Full Text] [Related]
8. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. Kaufmann J; Loser R; Leemann A J Colloid Interface Sci; 2009 Aug; 336(2):730-7. PubMed ID: 19505695 [TBL] [Abstract][Full Text] [Related]
9. Relationship between the Size of the Samples and the Interpretation of the Mercury Intrusion Results of an Artificial Sandstone. Dong H; Zhang H; Zuo Y; Gao P; Ye G Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382067 [TBL] [Abstract][Full Text] [Related]
10. Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model. Porcheron F; Thommes M; Ahmad R; Monson PA Langmuir; 2007 Mar; 23(6):3372-80. PubMed ID: 17305379 [TBL] [Abstract][Full Text] [Related]
11. Mercury Penetration and Snap-off in Lenticular Pores. Tsakiroglou CD; Kolonis GB; Roumeliotis TC; Payatakes AC J Colloid Interface Sci; 1997 Sep; 193(2):259-72. PubMed ID: 9344527 [TBL] [Abstract][Full Text] [Related]
12. Quantification of Spatial Correlation in Porous Media and Its Effect on Mercury Porosimetry. Bryant S; Mason G; Mellor D J Colloid Interface Sci; 1996 Jan; 177(1):88-100. PubMed ID: 10479420 [TBL] [Abstract][Full Text] [Related]
13. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance. Ni X; Zhao Z; Wang B; Li Z ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284 [TBL] [Abstract][Full Text] [Related]
14. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption. Thommes M; Skudas R; Unger KK; Lubda D J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477 [TBL] [Abstract][Full Text] [Related]