These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33945972)
21. Pore Size Distribution Analysis Using Developing Hysteresis of Nitrogen in the Cylindrical Pores of Silica. Morishige K Langmuir; 2022 Apr; 38(14):4222-4233. PubMed ID: 35360908 [TBL] [Abstract][Full Text] [Related]
22. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets]. Szepes A; Kovács J; Szabóné Revész P Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658 [TBL] [Abstract][Full Text] [Related]
23. Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials. Abell AB; Willis KL; Lange DA J Colloid Interface Sci; 1999 Mar; 211(1):39-44. PubMed ID: 9929433 [TBL] [Abstract][Full Text] [Related]
24. Pore size distributions and pore multifractal characteristics of medium and low-rank coals. Sun B; Yang Q; Zhu J; Shao T; Yang Y; Hou C; Li G Sci Rep; 2020 Dec; 10(1):22353. PubMed ID: 33339868 [TBL] [Abstract][Full Text] [Related]
26. Particle size and surface area distributions of pharmaceutical powders by microcomputerized mercury porosimetry. Carli F; Motta A J Pharm Sci; 1984 Feb; 73(2):197-203. PubMed ID: 6707882 [TBL] [Abstract][Full Text] [Related]
27. Pore structure and surface area of mannitol powder, granules and tablets determined with mercury porosimetry and nitrogen adsorption. Westermarck S; Juppo AM; Kervinen L; Yliruusi J Eur J Pharm Biopharm; 1998 Jul; 46(1):61-8. PubMed ID: 9700023 [TBL] [Abstract][Full Text] [Related]
28. Application of mercury intrusion porosimetry for studying the porosity of mineral trioxide aggregate at two different pH. Saghiri MA; Asgar K; Lotfi M; Karamifar K; Neelakantan P; Ricci JL Acta Odontol Scand; 2012 Jan; 70(1):78-82. PubMed ID: 21728747 [TBL] [Abstract][Full Text] [Related]
29. Supercritical CO Yang Q; Li W; Jin K ACS Omega; 2020 Apr; 5(16):9276-9290. PubMed ID: 32363278 [TBL] [Abstract][Full Text] [Related]
30. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry. Dehl RE J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222 [TBL] [Abstract][Full Text] [Related]
32. AFM-porosimetry: density and pore volume measurements of particulate materials. Sörensen MH; Valle-Delgado JJ; Corkery RW; Rutland MW; Alberius PC Langmuir; 2008 Jun; 24(13):7024-30. PubMed ID: 18503284 [TBL] [Abstract][Full Text] [Related]
33. Loading of Porous Functionalized Calcium Carbonate Microparticles: Distribution Analysis with Focused Ion Beam Electron Microscopy and Mercury Porosimetry. Farzan M; Roth R; Québatte G; Schoelkopf J; Huwyler J; Puchkov M Pharmaceutics; 2019 Jan; 11(1):. PubMed ID: 30650593 [TBL] [Abstract][Full Text] [Related]
34. Fractal Analysis in Pore Size Distributions of Different Bituminous Coals. Zhu J; He F; Zhang Y; Zhang R; Zhang B Sci Rep; 2019 Dec; 9(1):18162. PubMed ID: 31796834 [TBL] [Abstract][Full Text] [Related]
35. Pore network as a model of porous media: comparison between nonhierarchical and hierarchical organizations of pores. Vocka R; Dubois MA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5216-24. PubMed ID: 11089083 [TBL] [Abstract][Full Text] [Related]
36. Characterization of Macroscopic Structural Disorder in Porous Media Using Mercury Porosimetry. Rigby SP; Fletcher RS; Riley SN J Colloid Interface Sci; 2001 Aug; 240(1):190-210. PubMed ID: 11446801 [TBL] [Abstract][Full Text] [Related]
37. Pore network modelling of the behaviour of a solute in chromatography media: transient and steady-state diffusion properties. Bryntesson LM J Chromatogr A; 2002 Feb; 945(1-2):103-15. PubMed ID: 11860128 [TBL] [Abstract][Full Text] [Related]
38. Characterization of Nanoporous Materials. Thommes M; Schlumberger C Annu Rev Chem Biomol Eng; 2021 Jun; 12():137-162. PubMed ID: 33770464 [TBL] [Abstract][Full Text] [Related]
39. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials. Félix V; Jannot Y; Degiovanni A Rev Sci Instrum; 2012 May; 83(5):054903. PubMed ID: 22667640 [TBL] [Abstract][Full Text] [Related]
40. Characterization of highly porous polymeric materials with pore diameters larger than 100 nm by mercury porosimetry and X-ray scattering methods. Egger CC; du Fresne C; Raman VI; Schädler V; Frechen T; Roth SV; Müller-Buschbaum P Langmuir; 2008 Jun; 24(11):5877-87. PubMed ID: 18442280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]