These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33946026)
1. An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates. Cha Y; Shin J; Go B; Lee DS; Kim Y; Kim T; Park YS J Environ Manage; 2021 Aug; 291():112719. PubMed ID: 33946026 [TBL] [Abstract][Full Text] [Related]
2. Examining the rationality of Giant Panda National Park's zoning designations and management measures for habitat conservation: Insights from interpretable machine learning methods. Xu Y; Tang J Sci Total Environ; 2024 Apr; 920():170955. PubMed ID: 38354805 [TBL] [Abstract][Full Text] [Related]
3. Gut microbiota landscape and potential biomarker identification in female patients with systemic lupus erythematosus using machine learning. Song W; Wu F; Yan Y; Li Y; Wang Q; Hu X; Li Y Front Cell Infect Microbiol; 2023; 13():1289124. PubMed ID: 38169617 [TBL] [Abstract][Full Text] [Related]
4. Explainable machine learning improves interpretability in the predictive modeling of biological stream conditions in the Chesapeake Bay Watershed, USA. Maloney KO; Buchanan C; Jepsen RD; Krause KP; Cashman MJ; Gressler BP; Young JA; Schmid M J Environ Manage; 2022 Nov; 322():116068. PubMed ID: 36058075 [TBL] [Abstract][Full Text] [Related]
5. Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data. Kim D; Antariksa G; Handayani MP; Lee S; Lee J Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372436 [TBL] [Abstract][Full Text] [Related]
6. Using Historical Atlas Data to Develop High-Resolution Distribution Models of Freshwater Fishes. Huang J; Frimpong EA PLoS One; 2015; 10(6):e0129995. PubMed ID: 26075902 [TBL] [Abstract][Full Text] [Related]
7. Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods. Wang D; Thunéll S; Lindberg U; Jiang L; Trygg J; Tysklind M J Environ Manage; 2022 Jan; 301():113941. PubMed ID: 34731954 [TBL] [Abstract][Full Text] [Related]
8. On the interpretability of machine learning-based model for predicting hypertension. Elshawi R; Al-Mallah MH; Sakr S BMC Med Inform Decis Mak; 2019 Jul; 19(1):146. PubMed ID: 31357998 [TBL] [Abstract][Full Text] [Related]
9. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Park J; Lee WH; Kim KT; Park CY; Lee S; Heo TY Sci Total Environ; 2022 Aug; 832():155070. PubMed ID: 35398119 [TBL] [Abstract][Full Text] [Related]
10. Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification. Bifarin OO PLoS One; 2023; 18(5):e0284315. PubMed ID: 37141218 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums. Lu Y; Fan X; Zhang Y; Wang Y; Jiang X Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850757 [TBL] [Abstract][Full Text] [Related]
12. An Explainable Artificial Intelligence Framework for the Deterioration Risk Prediction of Hepatitis Patients. Peng J; Zou K; Zhou M; Teng Y; Zhu X; Zhang F; Xu J J Med Syst; 2021 Apr; 45(5):61. PubMed ID: 33847850 [TBL] [Abstract][Full Text] [Related]
13. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Nohara Y; Matsumoto K; Soejima H; Nakashima N Comput Methods Programs Biomed; 2022 Feb; 214():106584. PubMed ID: 34942412 [TBL] [Abstract][Full Text] [Related]
14. A machine learning model to assess the ecosystem response to water policy measures in the Tagus River Basin (Spain). Valerio C; De Stefano L; Martínez-Muñoz G; Garrido A Sci Total Environ; 2021 Jan; 750():141252. PubMed ID: 33182174 [TBL] [Abstract][Full Text] [Related]
15. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Liu Q; Gui D; Zhang L; Niu J; Dai H; Wei G; Hu BX Sci Total Environ; 2022 Jul; 831():154902. PubMed ID: 35364142 [TBL] [Abstract][Full Text] [Related]
16. Leveraging explainable machine learning models to assess forest health: A case study in Hainan, China. Li J; He B; Ahmad S; Mao W Ecol Evol; 2023 Sep; 13(9):e10558. PubMed ID: 37753308 [TBL] [Abstract][Full Text] [Related]
17. Shapley variable importance cloud for interpretable machine learning. Ning Y; Ong MEH; Chakraborty B; Goldstein BA; Ting DSW; Vaughan R; Liu N Patterns (N Y); 2022 Apr; 3(4):100452. PubMed ID: 35465224 [TBL] [Abstract][Full Text] [Related]
18. An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation. El Bilali A; Abdeslam T; Ayoub N; Lamane H; Ezzaouini MA; Elbeltagi A J Environ Manage; 2023 Feb; 327():116890. PubMed ID: 36459782 [TBL] [Abstract][Full Text] [Related]
19. Development and Interpretation of Multiple Machine Learning Models for Predicting Postoperative Delayed Remission of Acromegaly Patients During Long-Term Follow-Up. Dai C; Fan Y; Li Y; Bao X; Li Y; Su M; Yao Y; Deng K; Xing B; Feng F; Feng M; Wang R Front Endocrinol (Lausanne); 2020; 11():643. PubMed ID: 33042013 [No Abstract] [Full Text] [Related]
20. Multi-objective optimisation of species distribution models for river management. Gobeyn S; Goethals PLM Water Res; 2019 Oct; 163():114863. PubMed ID: 31349090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]