BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33946192)

  • 1. Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars.
    Spedalieri C; Szekeres GP; Werner S; Guttmann P; Kneipp J
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular optical probing with gold nanostars.
    Spedalieri C; Szekeres GP; Werner S; Guttmann P; Kneipp J
    Nanoscale; 2021 Jan; 13(2):968-979. PubMed ID: 33367430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating the composition and interface interactions in the hard corona of gold nanoparticles to the induced response mechanisms in living cells.
    Peter Szekeres G; Werner S; Guttmann P; Spedalieri C; Drescher D; Živanović V; Montes-Bayón M; Bettmer J; Kneipp J
    Nanoscale; 2020 Sep; 12(33):17450-17461. PubMed ID: 32856032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold Nanostar Spatial Distribution Impacts the Surface-Enhanced Raman Scattering Detection of Uranyl on Amidoximated Polymers.
    Phan HT; Vinson C; Haes AJ
    Langmuir; 2021 Apr; 37(16):4891-4899. PubMed ID: 33861606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars.
    Yuan H; Fales AM; Khoury CG; Liu J; Vo-Dinh T
    J Raman Spectrosc; 2013 Feb; 44(2):234-239. PubMed ID: 24839346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein.
    Tukova A; Kuschnerus IC; Garcia-Bennett A; Wang Y; Rodger A
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars.
    Pei Y; Wang Z; Zong S; Cui Y
    J Mater Chem B; 2013 Aug; 1(32):3992-3998. PubMed ID: 32261225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragmentation of Proteins in the Corona of Gold Nanoparticles As Observed in Live Cell Surface-Enhanced Raman Scattering.
    Szekeres GP; Montes-Bayón M; Bettmer J; Kneipp J
    Anal Chem; 2020 Jun; 92(12):8553-8560. PubMed ID: 32420733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization.
    Khoury CG; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2008; 2008(112):18849-18859. PubMed ID: 23977403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches.
    Meng X; Dyer J; Huo Y; Jiang C
    Langmuir; 2020 Apr; 36(13):3558-3564. PubMed ID: 32176502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram.
    Zhu J; Liu MJ; Li JJ; Li X; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes.
    Jalani G; Cerruti M
    Nanoscale; 2015 Jun; 7(22):9990-7. PubMed ID: 25981393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free plasmonic nanostar probes to illuminate
    Sloan-Dennison S; Schultz ZD
    Chem Sci; 2019 Feb; 10(6):1807-1815. PubMed ID: 30842849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional spiky branched gold-silver nanostars with near-infrared and short-wavelength infrared localized surface plasmon resonances.
    Joseph D; Baskaran R; Yang SG; Huh YS; Han YK
    J Colloid Interface Sci; 2019 Apr; 542():308-316. PubMed ID: 30763898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses.
    Demille TB; Hughes RA; Dominique N; Olson JE; Rouvimov S; Camden JP; Neretina S
    Nanoscale; 2020 Aug; 12(31):16489-16500. PubMed ID: 32790810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synthesis of Ag-coated tetrapod gold nanostars and the improvement of surface-enhanced Raman scattering.
    Zhu J; Chen XH; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():154-165. PubMed ID: 30537627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.