These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33946200)

  • 21. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.
    Akcil A; Erust C; Gahan CS; Ozgun M; Sahin M; Tuncuk A
    Waste Manag; 2015 Nov; 45():258-71. PubMed ID: 25704926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pretreatment of low-grade shredded dust e-waste to enhance silver recovery through biocyanidation by
    Thakur P; Kumar S
    3 Biotech; 2021 Nov; 11(11):454. PubMed ID: 34616648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans.
    Creamer NJ; Baxter-Plant VS; Henderson J; Potter M; Macaskie LE
    Biotechnol Lett; 2006 Sep; 28(18):1475-84. PubMed ID: 16909331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A pilot study on the content and the release of Ni and other allergenic metals from cheap earrings available on the Italian market.
    Bocca B; Forte G; Senofonte O; Violante N; Paoletti L; De Berardis B; Petrucci F; Cristaudo A
    Sci Total Environ; 2007 Dec; 388(1-3):24-34. PubMed ID: 17884145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly efficient and selective recovery of Au(III) by a new metal-organic polymer.
    Xu W; Mo X; Zhou S; Zhang P; Xiong B; Liu Y; Huang Y; Li H; Tang K
    J Hazard Mater; 2019 Dec; 380():120844. PubMed ID: 31299582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metallurgical recovery of metals from electronic waste: a review.
    Cui J; Zhang L
    J Hazard Mater; 2008 Oct; 158(2-3):228-56. PubMed ID: 18359555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase for preconcentration of heavy metals ions prior to determination by LC-UV.
    Werner J
    Talanta; 2018 May; 182():69-73. PubMed ID: 29501201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An alternative classification approach for waste electronic and electrical equipment (WEEE) recovery in low-income countries: case study in Burkina Faso.
    Andrianisa HA; Sossou SK; Zorom M; Nare L; Ahossouhe MS; Sanou A
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):39318-39330. PubMed ID: 38814561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.
    Quan SX; Yan B; Yang F; Li N; Xiao XM; Fu JM
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):1290-8. PubMed ID: 25138553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Examining the evolution of metals utilized in printed circuit boards.
    Adie GU; Sun L; Zeng X; Zheng L; Osibanjo O; Li J
    Environ Technol; 2017 Jul; 38(13-14):1696-1701. PubMed ID: 27673726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Recovery of Gold from Electronic Waste by New Efficient Type of Sorbent.
    Wójcik G; Górska-Parat M; Hubicki Z; Zinkowska K
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Renewable redox couple system for sustainable precious metal recycling from e-waste via halide-regulated potential inversion.
    Song Q; Sun H; Zhang L; Xu Z
    J Hazard Mater; 2021 Oct; 420():126568. PubMed ID: 34252663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of metals from Ni-Cu-Ag-Pd-Bi-Sn multi-metal system of e-waste by leaching and stepwise potential-controlled electrodeposition.
    Liu Y; Song Q; Zhang L; Xu Z
    J Hazard Mater; 2021 Apr; 408():124772. PubMed ID: 33388630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphonium ionic liquids as extractants for recovery of ruthenium(III) from acidic aqueous solutions.
    Rzelewska M; Baczyńska M; Wiśniewski M; Regel-Rosocka M
    Chem Zvesti; 2017; 71(6):1065-1072. PubMed ID: 28553005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis.
    Annamalai M; Gurumurthy K
    J Air Waste Manag Assoc; 2021 Mar; 71(3):315-327. PubMed ID: 32841086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.
    Prabaharan G; Barik SP; Kumar B
    Waste Manag; 2016 Jun; 52():302-8. PubMed ID: 27084106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective extraction of precious metals in the polar aprotic solvent system: Experiment and simulation.
    Wang R; Zhang L; Zhang C; Wang J; Guan J; Jian Z; Bu Y
    Waste Manag; 2022 Nov; 153():1-12. PubMed ID: 36029532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.
    Oguchi M; Sakanakura H; Terazono A; Takigami H
    Waste Manag; 2012 Jan; 32(1):96-103. PubMed ID: 21963338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sequential leaching procedure for efficient recovery of gold and silver from waste mobile phone printed circuit boards.
    Zhang ZY; Wu L; He K; Zhang FS
    Waste Manag; 2022 Nov; 153():13-19. PubMed ID: 36029533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.