These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33946262)

  • 21. MultiSenseBadminton: Wearable Sensor-Based Biomechanical Dataset for Evaluation of Badminton Performance.
    Seong M; Kim G; Yeo D; Kang Y; Yang H; DelPreto J; Matusik W; Rus D; Kim S
    Sci Data; 2024 Apr; 11(1):343. PubMed ID: 38580698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prototype Machine Learning Algorithms from Wearable Technology to Detect Tennis Stroke and Movement Actions.
    Perri T; Reid M; Murphy A; Howle K; Duffield R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Getting your game on: Using virtual reality to improve real table tennis skills.
    Michalski SC; Szpak A; Saredakis D; Ross TJ; Billinghurst M; Loetscher T
    PLoS One; 2019; 14(9):e0222351. PubMed ID: 31504070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of Tennis Shots with a Neural Network Approach.
    Ganser A; Hollaus B; Stabinger S
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of Tennis Activities with Wearable Sensors.
    Benages Pardo L; Buldain Perez D; Orrite Uruñuela C
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand.
    Bańkosz Z; Winiarski S
    J Sports Sci Med; 2018 Jun; 17(2):330-338. PubMed ID: 29769835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can Slow-Motion Footage of Forehand Strokes Be Used to Immediately Improve Anticipatory Judgments in Tennis?
    Fukuhara K; Maruyama T; Ida H; Ogata T; Sato B; Ishii M; Higuchi T
    Front Psychol; 2018; 9():1830. PubMed ID: 30337895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of 4 Weeks of Variability Training on Forehand Approach Precision and Velocity in Recreational Tennis Players.
    Negro C; Baiget E; Colomar J; Fuentes-García JP
    Motor Control; 2023 Oct; 27(4):705-716. PubMed ID: 37024108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Impact of Eye-closed and Weighted Multi-ball Training on the Improvement of the Stroke Effect of Adolescent Table Tennis Players.
    Cao Z; Xiao Y; Lu M; Ren X; Zhang P
    J Sports Sci Med; 2020 Mar; 19(1):43-51. PubMed ID: 32132826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning Three Dimensional Tennis Shots Using Graph Convolutional Networks.
    Skublewska-Paszkowska M; Powroznik P; Lukasik E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanics of Topspin Forehand Loop in Table Tennis: An Application of OpenSim Musculoskeletal Modelling.
    Zhu R; Yang X; Chong LC; Shao S; István B; Gu Y
    Healthcare (Basel); 2023 Apr; 11(9):. PubMed ID: 37174758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kinematic comparison between long-line and cross-court top spin forehand in competitive table tennis players.
    Malagoli Lanzoni I; Bartolomei S; Di Michele R; Fantozzi S
    J Sports Sci; 2018 Dec; 36(23):2637-2643. PubMed ID: 29578375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of scaling task constraints on emergent behaviours in children's racquet sports performance.
    Fitzpatrick A; Davids K; Stone JA
    Hum Mov Sci; 2018 Apr; 58():80-87. PubMed ID: 29353094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application of energy cost in evaluating energy expenditure in multi-ball practice with table tennis players].
    Li YM; Li B; Wang XX; Wang Y; Gu N
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2019 Jul; 35(4):331-335. PubMed ID: 31701717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Training Level Does Not Affect Auditory Perception of The Magnitude of Ball Spin in Table Tennis.
    Santos DP; Barbosa RN; Vieira LH; Santiago PR; Zagatto AM; Gomes MM
    J Hum Kinet; 2017 Jan; 55():19-27. PubMed ID: 28210335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic training of table tennis players' physical performance based on artificial intelligence technology and data fusion of sensing devices.
    Tang D
    SLAS Technol; 2024 Aug; 29(4):100151. PubMed ID: 38796032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual Strategies for Eye and Head Movements During Table Tennis Rallies.
    Shinkai R; Ando S; Nonaka Y; Kizuka T; Ono S
    Front Sports Act Living; 2022; 4():897373. PubMed ID: 35655529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial Intelligence Technologies and Their Application for Reform and Development of Table Tennis Training in Complex Environments.
    Han D; Zhang S; Zhang H
    Comput Intell Neurosci; 2022; 2022():3442610. PubMed ID: 35747715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The kinematic analysis of the lower limb during topspin forehand loop between different level table tennis athletes.
    He Y; Lyu X; Sun D; Baker JS; Gu Y
    PeerJ; 2021; 9():e10841. PubMed ID: 33763297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematic Parameters of Topspin Forehand in Table Tennis and Their Inter- and Intra-Individual Variability.
    Bańkosz Z; Winiarski S
    J Sports Sci Med; 2020 Mar; 19(1):138-148. PubMed ID: 32132837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.