BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33946701)

  • 1. Metasurface Fabrication by Cryogenic and Bosch Deep Reactive Ion Etching.
    Baracu AM; Dirdal CA; Avram AM; Dinescu A; Muller R; Jensen GU; Thrane PCV; Angelskår H
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33946701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards high-throughput large-area metalens fabrication using UV-nanoimprint lithography and Bosch deep reactive ion etching.
    Dirdal CA; Jensen GU; Angelskår H; Vaagen Thrane PC; Gjessing J; Ordnung DA
    Opt Express; 2020 May; 28(10):15542-15561. PubMed ID: 32403580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-Nanoimprint and Deep Reactive Ion Etching of High Efficiency Silicon Metalenses: High Throughput at Low Cost with Excellent Resolution and Repeatability.
    Dirdal CA; Milenko K; Summanwar A; Dullo FT; Thrane PCV; Rasoga O; Avram AM; Dinescu A; Baracu AM
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon Metalens Fabrication from Electron Beam to UV-Nanoimprint Lithography.
    Baracu AM; Avram MA; Breazu C; Bunea MC; Socol M; Stanculescu A; Matei E; Thrane PCV; Dirdal CA; Dinescu A; Rasoga O
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced Etch Lag and High Aspect Ratios by Deep Reactive Ion Etching (DRIE).
    Gerlt MS; Läubli NF; Manser M; Nelson BJ; Dual J
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34068670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching.
    Morton KJ; Nieberg G; Bai S; Chou SY
    Nanotechnology; 2008 Aug; 19(34):345301. PubMed ID: 21730643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching.
    Chekurov N; Grigoras K; Peltonen A; Franssila S; Tittonen I
    Nanotechnology; 2009 Feb; 20(6):065307. PubMed ID: 19417383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between Bosch and STiGer Processes for Deep Silicon Etching.
    Tillocher T; Nos J; Antoun G; Lefaucheux P; Boufnichel M; Dussart R
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.
    Miao H; Chen L; Mirzaeimoghri M; Kasica R; Wen H
    J Microelectromech Syst; 2016 Oct; 25(5):963-967. PubMed ID: 27799726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography.
    Woldering LA; Willem Tjerkstra R; Jansen HV; Setija ID; Vos WL
    Nanotechnology; 2008 Apr; 19(14):145304. PubMed ID: 21817758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ga(+) beam lithography for nanoscale silicon reactive ion etching.
    Henry MD; Shearn MJ; Chhim B; Scherer A
    Nanotechnology; 2010 Jun; 21(24):245303. PubMed ID: 20484788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-Scale Fabrication of Ultra-High Aspect Ratio, Microscale Silicon Structures with Smooth Sidewalls Using Metal Assisted Chemical Etching.
    Zhang X; Yao C; Niu J; Li H; Xie C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryogenic Etching of Silicon: An Alternative Method For Fabrication of Vertical Microcantilever Master Molds.
    Addae-Mensah KA; Retterer S; Opalenik SR; Thomas D; Lavrik NV; Wikswo JP
    J Microelectromech Syst; 2009 Dec; 19(1):. PubMed ID: 24223478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time multiplexed deep reactive ion etching of germanium and silicon-A comparison of mechanisms and application to x-ray optics.
    Genova VJ; Agyeman-Budu DN; Woll AR
    J Vac Sci Technol B Nanotechnol Microelectron; 2018 Jan; 36(1):011205. PubMed ID: 29333339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching.
    Li Z; Chen Y; Zhu X; Zheng M; Dong F; Chen P; Xu L; Chu W; Duan H
    Nanotechnology; 2016 Sep; 27(36):365302. PubMed ID: 27479528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications.
    Delachat F; Le Drogoff B; Constancias C; Delprat S; Gautier E; Chaker M; Margot J
    Nanotechnology; 2016 Jan; 27(2):025304. PubMed ID: 26630379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inductively Coupled Plasma Dry Etching of Silicon Deep Trenches with Extremely Vertical Smooth Sidewalls Used in Micro-Optical Gyroscopes.
    Zhang Y; Wu Y; Sun Q; Shen L; Lan J; Guo L; Shen Z; Wang X; Xiao J; Xu J
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV-assisted nanoimprint lithography: the impact of the loading effect in silicon on nanoscale patterns of metalens.
    Alnakhli Z; Liu Z; AlQatari F; Cao H; Li X
    Nanoscale Adv; 2024 May; 6(11):2954-2967. PubMed ID: 38817423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcones and nanograss: toward mechanically robust superhydrophobic surfaces.
    Kondrashov V; Rühe J
    Langmuir; 2014 Apr; 30(15):4342-50. PubMed ID: 24628022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and testing of freestanding Si nanogratings for UV filtration on space-based particle sensors.
    Mukherjee P; Zurbuchen TH; Guo LJ
    Nanotechnology; 2009 Aug; 20(32):325301. PubMed ID: 19620766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.