BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33946702)

  • 1. Identification of Novel Toxin Genes from the Stinging Nettle Caterpillar
    Mitpuangchon N; Nualcharoen K; Boonrotpong S; Engsontia P
    Insects; 2021 Apr; 12(5):. PubMed ID: 33946702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis.
    Hérnández-Elizárraga VH; Vega-Tamayo JE; Olguín-López N; Ibarra-Alvarado C; Rojas-Molina A
    J Proteomics; 2023 Sep; 288():104984. PubMed ID: 37536522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome annotation and characterization of novel toxins in six scorpion species.
    Grashof DGB; Kerkkamp HMI; Afonso S; Archer J; Harris DJ; Richardson MK; Vonk FJ; van der Meijden A
    BMC Genomics; 2019 Aug; 20(1):645. PubMed ID: 31409288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome of urticating setae of Ochrogaster lunifer, a processionary caterpillar of medical and veterinary importance, including primary structures of putative toxins.
    Walker AA; Perkins LE; Battisti A; Zalucki MP; King GF
    Proteomics; 2023 Oct; 23(20):e2300204. PubMed ID: 37528493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps.
    Macrander J; Brugler MR; Daly M
    BMC Genomics; 2015 Mar; 16(1):221. PubMed ID: 25886045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling the short, linear, non-disulfide bond-containing peptidome from the venom of the scorpion Tityus obscurus.
    Dias NB; de Souza BM; Cocchi FK; Chalkidis HM; Dorce VAC; Palma MS
    J Proteomics; 2018 Jan; 170():70-79. PubMed ID: 28918200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides.
    Zhong J; Zeng XC; Zeng X; Nie Y; Zhang L; Wu S; Bao A
    J Proteomics; 2017 Jan; 150():40-62. PubMed ID: 27519694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx.
    Lecaudey LA; Netzer R; Wibberg D; Busche T; Bloecher N
    Toxicon; 2024 Jan; 237():107556. PubMed ID: 38072317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus.
    Mille BG; Peigneur S; Diego-García E; Predel R; Tytgat J
    Toxicon; 2014 Jun; 83():75-83. PubMed ID: 24631597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are Fireworms Venomous? Evidence for the Convergent Evolution of Toxin Homologs in Three Species of Fireworms (Annelida, Amphinomidae).
    Verdes A; Simpson D; Holford M
    Genome Biol Evol; 2018 Jan; 10(1):249-268. PubMed ID: 29293976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch.
    Goudet C; Chi CW; Tytgat J
    Toxicon; 2002 Sep; 40(9):1239-58. PubMed ID: 12220709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caterpillar Venom: A Health Hazard of the 21st Century.
    Seldeslachts A; Peigneur S; Tytgat J
    Biomedicines; 2020 May; 8(6):. PubMed ID: 32486237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis.
    Cheng TC; Long RW; Wu YQ; Guo YB; Liu DL; Peng L; Li DQ; Yang DW; Xu X; Liu FX; Xia QY
    Insect Sci; 2016 Jun; 23(3):487-99. PubMed ID: 26678257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Venomous caterpillars: From inoculation apparatus to venom composition and envenomation.
    Villas-Boas IM; Bonfá G; Tambourgi DV
    Toxicon; 2018 Oct; 153():39-52. PubMed ID: 30145232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches.
    Zhang YY; Huang Y; He QZ; Luo J; Zhu L; Lu SS; Liu JY; Huang PF; Zeng XZ; Liang SP
    J Biol Chem; 2015 May; 290(22):14192-207. PubMed ID: 25770214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venom composition and bioactive RF-amide peptide toxins of the saddleback caterpillar, Acharia stimulea (Lepidoptera: Limacodidae).
    Goudarzi MH; Eagles DA; Lim J; Biggs KA; Kotze AC; Ruffell AP; Fairlie DP; King GF; Walker AA
    Biochem Pharmacol; 2023 Jul; 213():115598. PubMed ID: 37201876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity.
    Rokyta DR; Ward MJ
    Toxicon; 2017 Mar; 128():23-37. PubMed ID: 28115184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ants: a chemical library of anticancer molecules].
    Vétillard A; Bouzid W
    Biol Aujourdhui; 2016; 210(2):119-25. PubMed ID: 27687602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nemertean toxin genes revealed through transcriptome sequencing.
    Whelan NV; Kocot KM; Santos SR; Halanych KM
    Genome Biol Evol; 2014 Nov; 6(12):3314-25. PubMed ID: 25432940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depressant insect selective neurotoxins from scorpion venom: chemistry, action, and gene cloning.
    Zlotkin E; Gurevitz M; Fowler E; Adams ME
    Arch Insect Biochem Physiol; 1993; 22(1-2):55-73. PubMed ID: 8431601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.