These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 33946791)

  • 1. Sucrose Utilization for Improved Crop Yields: A Review Article.
    Aluko OO; Li C; Wang Q; Liu H
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools.
    Lu MZ; Snyder R; Grant J; Tegeder M
    Plant J; 2020 Jan; 101(1):217-236. PubMed ID: 31520495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Long-Distance Carbon Partitioning from Photosynthetic Source Leaves to Heterotrophic Sink Organs with Photoassimilated [
    Yadav UP; Shaikh MA; Evers J; Regmi KC; Gaxiola RA; Ayre BG
    Methods Mol Biol; 2019; 2014():223-233. PubMed ID: 31197800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source and sink mechanisms of nitrogen transport and use.
    Tegeder M; Masclaux-Daubresse C
    New Phytol; 2018 Jan; 217(1):35-53. PubMed ID: 29120059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that mitochondrial alternative oxidase respiration supports carbon balance in source leaves of Nicotiana tabacum.
    Chadee A; Mohammad M; Vanlerberghe GC
    J Plant Physiol; 2022 Dec; 279():153840. PubMed ID: 36265227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal periodicity of assimilate transport shapes resource allocation and whole-plant carbon balance.
    Brauner K; Birami B; Brauner HA; Heyer AG
    Plant J; 2018 Jun; 94(5):776-789. PubMed ID: 29575337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
    Braun DM; Wang L; Ruan YL
    J Exp Bot; 2014 Apr; 65(7):1713-35. PubMed ID: 24347463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.
    Albacete AA; Martínez-Andújar C; Pérez-Alfocea F
    Biotechnol Adv; 2014; 32(1):12-30. PubMed ID: 24513173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved resource allocation and stabilization of yield under abiotic stress.
    Keller I; Rodrigues CM; Neuhaus HE; Pommerrenig B
    J Plant Physiol; 2021 Feb; 257():153336. PubMed ID: 33360492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation.
    Zakhartsev M; Medvedeva I; Orlov Y; Akberdin I; Krebs O; Schulze WX
    BMC Plant Biol; 2016 Dec; 16(1):262. PubMed ID: 28031032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions.
    Fernie AR; Bachem CWB; Helariutta Y; Neuhaus HE; Prat S; Ruan YL; Stitt M; Sweetlove LJ; Tegeder M; Wahl V; Sonnewald S; Sonnewald U
    Nat Plants; 2020 Feb; 6(2):55-66. PubMed ID: 32042154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields.
    Gibson K; Park JS; Nagai Y; Hwang SK; Cho YC; Roh KH; Lee SM; Kim DH; Choi SB; Ito H; Edwards GE; Okita TW
    Plant Sci; 2011 Sep; 181(3):275-81. PubMed ID: 21763538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO
    Lal MK; Sharma N; Adavi SB; Sharma E; Altaf MA; Tiwari RK; Kumar R; Kumar A; Dey A; Paul V; Singh B; Singh MP
    Plant Mol Biol; 2022 Nov; 110(4-5):305-324. PubMed ID: 35610527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2.
    Xu Q; Yin S; Ma Y; Song M; Song Y; Mu S; Li Y; Liu X; Ren Y; Gao C; Chen S; Liesche J
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6223-6230. PubMed ID: 32123097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a Mathematical Model of Phloem Transport to Optimize Strategies for Crop Improvement.
    Seki M
    Methods Mol Biol; 2019; 2014():387-395. PubMed ID: 31197810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development.
    Li J; Kim YJ; Zhang D
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.
    Zhang L; Garneau MG; Majumdar R; Grant J; Tegeder M
    Plant J; 2015 Jan; 81(1):134-46. PubMed ID: 25353986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters.
    Durand M; Mainson D; Porcheron B; Maurousset L; Lemoine R; Pourtau N
    Planta; 2018 Mar; 247(3):587-611. PubMed ID: 29138971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane.
    McCormick AJ; Cramer MD; Watt DA
    Ann Bot; 2008 Jan; 101(1):89-102. PubMed ID: 17942591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield.
    Zrenner R; Krause KP; Apel P; Sonnewald U
    Plant J; 1996 May; 9(5):671-81. PubMed ID: 8653116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.