BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 33946791)

  • 1. Sucrose Utilization for Improved Crop Yields: A Review Article.
    Aluko OO; Li C; Wang Q; Liu H
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools.
    Lu MZ; Snyder R; Grant J; Tegeder M
    Plant J; 2020 Jan; 101(1):217-236. PubMed ID: 31520495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that mitochondrial alternative oxidase respiration supports carbon balance in source leaves of Nicotiana tabacum.
    Chadee A; Mohammad M; Vanlerberghe GC
    J Plant Physiol; 2022 Dec; 279():153840. PubMed ID: 36265227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved resource allocation and stabilization of yield under abiotic stress.
    Keller I; Rodrigues CM; Neuhaus HE; Pommerrenig B
    J Plant Physiol; 2021 Feb; 257():153336. PubMed ID: 33360492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions.
    Fernie AR; Bachem CWB; Helariutta Y; Neuhaus HE; Prat S; Ruan YL; Stitt M; Sweetlove LJ; Tegeder M; Wahl V; Sonnewald S; Sonnewald U
    Nat Plants; 2020 Feb; 6(2):55-66. PubMed ID: 32042154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2.
    Xu Q; Yin S; Ma Y; Song M; Song Y; Mu S; Li Y; Liu X; Ren Y; Gao C; Chen S; Liesche J
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6223-6230. PubMed ID: 32123097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO
    Lal MK; Sharma N; Adavi SB; Sharma E; Altaf MA; Tiwari RK; Kumar R; Kumar A; Dey A; Paul V; Singh B; Singh MP
    Plant Mol Biol; 2022 Nov; 110(4-5):305-324. PubMed ID: 35610527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development.
    Li J; Kim YJ; Zhang D
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters.
    Durand M; Mainson D; Porcheron B; Maurousset L; Lemoine R; Pourtau N
    Planta; 2018 Mar; 247(3):587-611. PubMed ID: 29138971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane.
    McCormick AJ; Cramer MD; Watt DA
    Ann Bot; 2008 Jan; 101(1):89-102. PubMed ID: 17942591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar transporters in grasses: Function and modulation in source and storage tissues.
    Dhungana SR; Braun DM
    J Plant Physiol; 2021 Nov; 266():153541. PubMed ID: 34634553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield.
    Obata T; Klemens PAW; Rosado-Souza L; Schlereth A; Gisel A; Stavolone L; Zierer W; Morales N; Mueller LA; Zeeman SC; Ludewig F; Stitt M; Sonnewald U; Neuhaus HE; Fernie AR
    Plant J; 2020 Jun; 102(6):1202-1219. PubMed ID: 31950549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sucrose transporter in rice.
    Wu Y; Fang W; Peng W; Jiang M; Chen G; Xiong F
    Plant Signal Behav; 2021 Nov; 16(11):1952373. PubMed ID: 34269147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience?
    Paul MJ
    J Plant Physiol; 2021 Nov; 266():153537. PubMed ID: 34619557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Long-distance Transport from Photosynthetic Source Leaves to Heterotrophic Sink Organs with [
    Yadav UP; Khadilkar AS; Shaikh MA; Turgeon R; Ayre BG
    Bio Protoc; 2017 Dec; 7(24):e2657. PubMed ID: 34595317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ureides in source-to-sink transport of photoassimilates in non-fixing soybean.
    Thu SW; Lu MZ; Carter AM; Collier R; Gandin A; Sitton CC; Tegeder M
    J Exp Bot; 2020 Jul; 71(15):4495-4511. PubMed ID: 32188989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous Sucrose Confers Low Light Tolerance in Tomato Plants by Increasing Carbon Partitioning from Stems to Leaves.
    Wang H; Yu H; Chai L; Lu T; Li Y; Jiang W; Li Q
    J Agric Food Chem; 2023 Dec; 71(51):20625-20642. PubMed ID: 38096491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on source-to-sink carbon partitioning in tomato.
    Osorio S; Ruan YL; Fernie AR
    Front Plant Sci; 2014; 5():516. PubMed ID: 25339963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the physiological relevance of sucrose export repression by an Flowering Time homolog in the long-distance phloem of potato.
    van den Herik B; Bergonzi S; Bachem CWB; Ten Tusscher K
    Plant Cell Environ; 2021 Mar; 44(3):792-806. PubMed ID: 33314152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield.
    Liang XG; Gao Z; Fu XX; Chen XM; Shen S; Zhou SL
    Front Plant Sci; 2023; 14():1206829. PubMed ID: 37731984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.