These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 33946791)

  • 21. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies.
    Raines CA
    Plant Physiol; 2011 Jan; 155(1):36-42. PubMed ID: 21071599
    [No Abstract]   [Full Text] [Related]  

  • 22. Source-to-sink transport of sugar and regulation by environmental factors.
    Lemoine R; La Camera S; Atanassova R; Dédaldéchamp F; Allario T; Pourtau N; Bonnemain JL; Laloi M; Coutos-Thévenot P; Maurousset L; Faucher M; Girousse C; Lemonnier P; Parrilla J; Durand M
    Front Plant Sci; 2013; 4():272. PubMed ID: 23898339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systemic Signaling: A Role in Propelling Crop Yield.
    Chen J; Ham BK
    Plants (Basel); 2022 May; 11(11):. PubMed ID: 35684173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A meta-analysis of crop response patterns to nitrogen limitation for improved model representation.
    Seufert V; Granath G; Müller C
    PLoS One; 2019; 14(10):e0223508. PubMed ID: 31622350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of grafting on crops' photosynthetic performance.
    Fullana-Pericàs M; Conesa MÀ; Pérez-Alfocea F; Galmés J
    Plant Sci; 2020 Jun; 295():110250. PubMed ID: 32534620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of source-sink tissues in the leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) by carbohydrate content and transcriptomic analysis.
    Lee J; Dong X; Choi K; Song H; Yi H; Hur Y
    Genes Genomics; 2020 Jan; 42(1):13-24. PubMed ID: 31612374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants.
    Price GD; Badger MR; von Caemmerer S
    Plant Physiol; 2011 Jan; 155(1):20-6. PubMed ID: 20923885
    [No Abstract]   [Full Text] [Related]  

  • 28. It's a model and it's looking good: A multi-organ metabolic model predicts developmental responses in tomato.
    Hellmann E; Campos ML
    Plant Physiol; 2022 Mar; 188(3):1417-1418. PubMed ID: 35245379
    [No Abstract]   [Full Text] [Related]  

  • 29. Source-Sink Relationships in Crop Plants and Their Influence on Yield Development and Nutritional Quality.
    Smith MR; Rao IM; Merchant A
    Front Plant Sci; 2018; 9():1889. PubMed ID: 30619435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effective Metabolic Carbon Utilization and Shoot-to-Root Partitioning Modulate Distinctive Yield in High Yielding Cassava Variety.
    Chiewchankaset P; Thaiprasit J; Kalapanulak S; Wojciechowski T; Boonjing P; Saithong T
    Front Plant Sci; 2022; 13():832304. PubMed ID: 35251103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach.
    Fischer ES; Lohaus G; Heineke D; Heldt HW
    Physiol Plant; 1998 Jan; 102(1):16-20. PubMed ID: 35359133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding source-sink interactions: Progress in model plants and translational research to crops.
    Rosado-Souza L; Yokoyama R; Sonnewald U; Fernie AR
    Mol Plant; 2023 Jan; 16(1):96-121. PubMed ID: 36447435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Source:sink imbalance detected with leaf- and canopy-level spectroscopy in a field-grown crop.
    Burnett AC; Serbin SP; Rogers A
    Plant Cell Environ; 2021 Aug; 44(8):2466-2479. PubMed ID: 33764536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress.
    Ferguson JN; Tidy AC; Murchie EH; Wilson ZA
    Plant Cell Environ; 2021 Jul; 44(7):2066-2089. PubMed ID: 33538010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reducing the sink/source ratio of on-date palm plants during fruit growth has physiological and biochemical impacts on the shift in source-sink limitations.
    Alikhani-Koupaei M; Ehtesham Nia A
    J Sci Food Agric; 2023 Nov; 103(14):7104-7116. PubMed ID: 37332084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions.
    Griffiths CA; Paul MJ; Foyer CH
    Biochim Biophys Acta; 2016 Oct; 1857(10):1715-25. PubMed ID: 27487250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic strategies for improving crop yields.
    Bailey-Serres J; Parker JE; Ainsworth EA; Oldroyd GED; Schroeder JI
    Nature; 2019 Nov; 575(7781):109-118. PubMed ID: 31695205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing Rates of Long-distance Carbon Transport in
    Yadav UP; Khadilkar AS; Shaikh MA; Turgeon R; Ayre BG
    Bio Protoc; 2017 Dec; 7(24):e2656. PubMed ID: 34595316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Undirected Sucrose Efflux Mitigation by the FT-Like SP6A Preferentially Enhances Tuber Resource Partitioning.
    van den Herik B; Ten Tusscher K
    Front Plant Sci; 2022; 13():817909. PubMed ID: 35615135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Source-sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum.
    Gandin A; Gutjahr S; Dizengremel P; Lapointe L
    J Exp Bot; 2011 Jun; 62(10):3467-79. PubMed ID: 21335435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.