These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33946828)

  • 1. Preparation of Amylose-Oligo[(
    Kadokawa JI; Wada Y; Yamamoto K
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33946828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Nanostructured Supramolecules through Helical Inclusion of Amylose toward Hydrophobic Polyester Guests, Biomimetically through Vine-Twining Polymerization Process.
    Kadokawa JI
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vine-Twining Inclusion Behavior of Amylose towards Hydrophobic Polyester, Poly(β-propiolactone), in Glucan Phosphorylase-Catalyzed Enzymatic Polymerization.
    Iwamoto MA; Kadokawa JI
    Life (Basel); 2023 Jan; 13(2):. PubMed ID: 36836651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Material Application of Amylose-Polymer Inclusion Complexes by Enzymatic Polymerization Approach.
    Orio S; Yamamoto K; Kadokawa JI
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of amylose supramolecules in form of inclusion complexes by phosphorylase-catalyzed enzymatic polymerization.
    Kadokawa J
    Biomolecules; 2013 Jul; 3(3):369-85. PubMed ID: 24970172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vine-twining polymerization: amylose twines around polyethers to form amylose-polyether inclusion complexes.
    Kadokawa J; Kaneko Y; Nagase S; Takahashi T; Tagaya H
    Chemistry; 2002 Aug; 8(15):3321-6. PubMed ID: 12203312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in Macroscopic Morphologies of Amylosic Supramolecular Networks Depending on Guest Polymers in Vine-Twining Polymerization.
    Orio S; Shoji T; Yamamoto K; Kadokawa JI
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of enzymatically recyclable hydrogels through the formation of inclusion complexes of amylose in a vine-twining polymerization.
    Kaneko Y; Fujisaki K; Kyutoku T; Furukawa H; Kadokawa J
    Chem Asian J; 2010 Jul; 5(7):1627-33. PubMed ID: 20480493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Supramolecular Soft Materials from Amylosic Inclusion Complexes with Designed Guest Polymers Obtained by Vine-Twining Polymerization.
    Kadokawa JI; Yano K; Orio S; Yamamoto K
    ACS Omega; 2019 Apr; 4(4):6331-6338. PubMed ID: 31459773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Stability of Amylose Inclusion Complexes Depending on Guest Polymers and Their Application to Supramolecular Polymeric Materials.
    Tanaka T; Tsutsui A; Tanaka K; Yamamoto K; Kadokawa JI
    Biomolecules; 2017 Mar; 7(1):. PubMed ID: 28294979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of polysaccharide supramolecular films by vine-twining polymerization approach.
    Kadokawa J; Nomura S; Hatanaka D; Yamamoto K
    Carbohydr Polym; 2013 Oct; 98(1):611-7. PubMed ID: 23987389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amylose's recognition of chirality in polylactides on formation of inclusion complexes in vine-twining polymerization.
    Kaneko Y; Ueno K; Yui T; Nakahara K; Kadokawa J
    Macromol Biosci; 2011 Oct; 11(10):1407-15. PubMed ID: 21830300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions.
    Kadokawa JI
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amylose selectively includes one from a mixture of two resemblant polyethers in vine-twining polymerization.
    Kaneko Y; Beppu K; Kadokawa J
    Biomacromolecules; 2007 Oct; 8(10):2983-5. PubMed ID: 17880135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of microparticles from amylose-grafted poly(γ-glutamic acid) networks obtained by thermostable phosphorylase-catalyzed enzymatic polymerization.
    Kadokawa JI; Orio S; Yamamoto K
    RSC Adv; 2019 May; 9(28):16176-16182. PubMed ID: 35521363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic synthesis of functional amylosic materials and amylose analog polysaccharides.
    Kadokawa JI
    Methods Enzymol; 2019; 627():189-213. PubMed ID: 31630740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amylose-Coated Biohybrid Microgels by Phosphorylase-Catalyzed Grafting-From Polymerization.
    Gau E; Flecken F; Belthle T; Ambarwati M; Loos K; Pich A
    Macromol Rapid Commun; 2019 Aug; 40(16):e1900144. PubMed ID: 31162765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of α(1→4)-linked non-natural mannoglucans by α-glucan phosphorylase-catalyzed enzymatic copolymerization.
    Baba R; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2016 Oct; 151():1034-1039. PubMed ID: 27474652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ synthesis of amylose/single-walled carbon nanotubes supramolecular assembly.
    Yang L; Zhang B; Liang Y; Yang B; Kong T; Zhang LM
    Carbohydr Res; 2008 Sep; 343(14):2463-7. PubMed ID: 18653174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.