These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33946861)

  • 1. Doped or Quantum-Dot Layers as In Situ Etch-Stop Indicators for III/V Semiconductor Reactive Ion Etching (RIE) Using Reflectance Anisotropy Spectroscopy (RAS).
    Sombrio G; Oliveira E; Strassner J; Richter J; Doering C; Fouckhardt H
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33946861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise in situ etch depth control of multilayered III-V semiconductor samples with reflectance anisotropy spectroscopy (RAS) equipment.
    Kleinschmidt AK; Barzen L; Strassner J; Doering C; Fouckhardt H; Bock W; Wahl M; Kopnarski M
    Beilstein J Nanotechnol; 2016; 7():1783-1793. PubMed ID: 28144528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing fluorocarbon assisted atomic layer etching of Si using cyclic Ar/C
    Metzler D; Li C; Engelmann S; Bruce RL; Joseph EA; Oehrlein GS
    J Chem Phys; 2017 Feb; 146(5):052801. PubMed ID: 28178847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive Ion Etching in the Gaseous Electronics Conference RF Reference Cell.
    Brake ML; Pender JTP; Buie MJ; Ricci A; Soniker J; Pochan PD; Miller PA
    J Res Natl Inst Stand Technol; 1995; 100(4):441-448. PubMed ID: 29151753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructuring of ultra-thin HfO2 layers for high-k/III-V device application.
    Benedicto M; Anguita J; Alvaro R; Galiana B; Molina-Aldereguia JM; Tejedor P
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8848-52. PubMed ID: 22400270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-beam etching for the precise manufacture of optical coatings.
    Poitras D; Dobrowolski JA; Cassidy T; Moisa S
    Appl Opt; 2003 Jul; 42(19):4037-44. PubMed ID: 12868845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Suspended III-V Nanofoils by Inverse Metal-Assisted Chemical Etching of In
    Wilhelm TS; Soule CW; Baboli MA; O'Connell CJ; Mohseni PK
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2058-2066. PubMed ID: 29303241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective etching of AlAs for preparation of III-V semiconductor thin foils.
    Breen KR; Wilson RA; McClintock JA; Ahearn JS
    Microsc Res Tech; 1993 Jul; 25(4):291-6. PubMed ID: 8358079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ga(+) beam lithography for nanoscale silicon reactive ion etching.
    Henry MD; Shearn MJ; Chhim B; Scherer A
    Nanotechnology; 2010 Jun; 21(24):245303. PubMed ID: 20484788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication.
    Huff M
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Etch Characteristics of Nanoscale Patterned Magnetic Tunnel Junction Stacks Using Pulse-Modulated Radio Frequency Source Plasma.
    Lee JY; Lim ET; Ryu JS; Choi JS; Chung CW
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5131-5137. PubMed ID: 32126711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery.
    Liu Y; Eng PF; Guy OJ; Roberts K; Ashraf H; Knight N
    IET Nanobiotechnol; 2013 Jun; 7(2):59-62. PubMed ID: 24046906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon.
    Dialameh M; Lupi FF; Imbraguglio D; Zanenga F; Lamperti A; Martella D; Seguini G; Perego M; Rossi AM; De Leo N; Boarino L
    Nanotechnology; 2017 Oct; 28(40):404001. PubMed ID: 28729521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices.
    Ma Z; Liu Y; Deng L; Zhang M; Zhang S; Ma J; Song P; Liu Q; Ji A; Yang F; Wang X
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29385759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brewster "mode" in highly doped semiconductor layers: an all-optical technique to monitor doping concentration.
    Taliercio T; Guilengui VN; Cerutti L; Tournié E; Greffet JJ
    Opt Express; 2014 Oct; 22(20):24294-303. PubMed ID: 25322004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Etch Characteristics of Micrometer-Scale Masked Cu Thin Films Using Inductively Coupled Plasma of H₂/Ar.
    Choi JS; Cho DH; Lim ET; Chung CW
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6506-6511. PubMed ID: 31026985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordered Al
    Wilhelm TS; Wang Z; Baboli MA; Yan J; Preble SF; Mohseni PK
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27488-27497. PubMed ID: 30079732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic Etching of InGaN Thin Films with Photoelectrochemical Etching to Form Quantum Dots.
    Wei X; Al Muyeed SA; Xue H; Wierer JJ
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature.
    Ranasinghe L; Heyn C; Deneke K; Zocher M; Korneev R; Hansen W
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Study of Reactive Ion Etching of Heavily Doped Polysilicon Based on HBr/O
    Zhou N; Li J; Mao H; Liu H; Liu J; Gao J; Xiang J; Hu Y; Shi M; Ju J; Lei Y; Yang T; Li J; Wang W
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.