BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33947136)

  • 1. Changes in Allele Frequencies When Different Genomic Coancestry Matrices Are Used for Maintaining Genetic Diversity.
    Morales-González E; Fernández J; Pong-Wong R; Toro MÁ; Villanueva B
    Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33947136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintenance of genetic diversity in subdivided populations using genomic coancestry matrices.
    Morales-González E; Villanueva B; Toro MÁ; Fernández J
    Mol Ecol Resour; 2023 Mar; ():. PubMed ID: 36906916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using genomic tools to maintain diversity and fitness in conservation programmes.
    de Cara MÁ; Villanueva B; Toro MÁ; Fernández J
    Mol Ecol; 2013 Dec; 22(24):6091-9. PubMed ID: 24128280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of genomic coancestry matrices in the optimisation of contributions to maintain genetic diversity at specific regions of the genome.
    Gómez-Romano F; Villanueva B; Fernández J; Woolliams JA; Pong-Wong R
    Genet Sel Evol; 2016 Jan; 48():2. PubMed ID: 26763889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations.
    Bosse M; Megens HJ; Madsen O; Crooijmans RP; Ryder OA; Austerlitz F; Groenen MA; de Cara MA
    Genome Res; 2015 Jul; 25(7):970-81. PubMed ID: 26063737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preserving population allele frequencies in ex situ conservation programs.
    Saura M; Pérez-Figueroa A; Fernández J; Toro MA; Caballero A
    Conserv Biol; 2008 Oct; 22(5):1277-87. PubMed ID: 18680505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintaining genetic diversity using molecular coancestry: the effect of marker density and effective population size.
    Gómez-Romano F; Villanueva B; de Cara MA; Fernández J
    Genet Sel Evol; 2013 Oct; 45(1):38. PubMed ID: 24088414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of coancestry based on shared segments for maintaining genetic diversity.
    Gómez-Romano F; Villanueva B; Sölkner J; de Cara MA; Mészáros G; Pérez O'Brien AM; Fernández J
    J Anim Breed Genet; 2016 Oct; 133(5):357-65. PubMed ID: 26991632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices.
    Lourenco DA; Tsuruta S; Fragomeni BO; Chen CY; Herring WO; Misztal I
    J Anim Sci; 2016 Mar; 94(3):909-19. PubMed ID: 27065253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations.
    Makanjuola BO; Miglior F; Abdalla EA; Maltecca C; Schenkel FS; Baes CF
    J Dairy Sci; 2020 Jun; 103(6):5183-5199. PubMed ID: 32278553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the usefulness of the molecular coancestry information to assess genetic relationships in livestock using a set of Spanish sheep breeds.
    Alvarez I; Gutiérrez JP; Royo LJ; Fernández I; Gómez E; Arranz JJ; Goyache F
    J Anim Sci; 2005 Apr; 83(4):737-44. PubMed ID: 15753326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling Coancestry and Thereby Future Inbreeding by Optimum-Contribution Selection Using Alternative Genomic-Relationship Matrices.
    Gebregiwergis GT; Sørensen AC; Henryon M; Meuwissen T
    Front Genet; 2020; 11():345. PubMed ID: 32425971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial selection with traditional or genomic relationships: consequences in coancestry and genetic diversity.
    Rodríguez-Ramilo ST; García-Cortés LA; de Cara MÁ
    Front Genet; 2015; 6():127. PubMed ID: 25904933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic variability of the Gentile di Puglia sheep breed based on microsatellite polymorphism.
    d'Angelo F; Albenzio M; Sevi A; Ciampolini R; Cecchi F; Ciani E; Muscio A
    J Anim Sci; 2009 Apr; 87(4):1205-9. PubMed ID: 19098255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HLA class II polymorphism in the Ticuna of Brazil: evolutionary implications of the DRB1*0807 allele.
    Mack SJ; Erlich HA
    Tissue Antigens; 1998 Jan; 51(1):41-50. PubMed ID: 9459502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing priorities for conservation in Tuscan cattle breeds using microsatellites.
    Bozzi R; Alvarez I; Crovetti A; Fernández I; De Petris D; Goyache F
    Animal; 2012 Feb; 6(2):203-11. PubMed ID: 22436177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage disequilibrium between four MTTP gene polymorphisms in a Mexican population.
    Luévano KE; González JR; Perea FJ; Magaña MT
    Ann Hum Biol; 2009; 36(2):211-9. PubMed ID: 19255880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis in endangered populations: a case study in Barbaresca sheep.
    Mastrangelo S; Portolano B; Di Gerlando R; Ciampolini R; Tolone M; Sardina MT;
    Animal; 2017 Jul; 11(7):1107-1116. PubMed ID: 28077191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of coancestry on accuracy of individual assignments to population of origin: examples using Great Lakes lake trout (Salvelinus namaycush).
    Guinand B; Scribner KT; Page KS; Filcek K; Main L; Burnham-Curtis MK
    Genetica; 2006 May; 127(1-3):329-40. PubMed ID: 16850237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variance in estimated pairwise genetic distance under high versus low coverage sequencing: The contribution of linkage disequilibrium.
    Shpak M; Ni Y; Lu J; Müller P
    Theor Popul Biol; 2017 Oct; 117():51-63. PubMed ID: 28842178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.