These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33947165)

  • 1. Site-Specific Conversion of Cysteine in a Protein to Dehydroalanine Using 2-Nitro-5-thiocyanatobenzoic Acid.
    Qiao Y; Yu G; Leeuwon SZ; Liu WR
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33947165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of alternative products and optimization of 2-nitro-5-thiocyanatobenzoic acid cyanylation and cleavage at cysteine residues.
    Tang HY; Speicher DW
    Anal Biochem; 2004 Nov; 334(1):48-61. PubMed ID: 15464952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins.
    Bernardes GJ; Chalker JM; Errey JC; Davis BG
    J Am Chem Soc; 2008 Apr; 130(15):5052-3. PubMed ID: 18357986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications.
    Chalker JM; Lercher L; Rose NR; Schofield CJ; Davis BG
    Angew Chem Int Ed Engl; 2012 Feb; 51(8):1835-9. PubMed ID: 22247073
    [No Abstract]   [Full Text] [Related]  

  • 5. Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin.
    Bar-Or R; Rael LT; Bar-Or D
    Rapid Commun Mass Spectrom; 2008; 22(5):711-6. PubMed ID: 18265430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.
    Pilo AL; Zhao F; McLuckey SA
    J Proteome Res; 2016 Sep; 15(9):3139-46. PubMed ID: 27476698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive identification of novel post-translational modifications in cellular peroxiredoxin 6.
    Jeong J; Kim Y; Kyung Seong J; Lee KJ
    Proteomics; 2012 May; 12(9):1452-62. PubMed ID: 22589192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitro-thiocyanobenzoic acid (NTCB) reactivity of cysteines beta100 and beta110 in porcine luteinizing hormone: metastability and hypothetical isomerization of the two disulfide bridges of its beta-subunit seatbelt.
    Belghazi M; Klett D; Cahoreau C; Combarnous Y
    Mol Cell Endocrinol; 2006 Mar; 247(1-2):175-82. PubMed ID: 16458419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A "tag-and-modify" approach to site-selective protein modification.
    Chalker JM; Bernardes GJ; Davis BG
    Acc Chem Res; 2011 Sep; 44(9):730-41. PubMed ID: 21563755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into dehydroalanine and alanine, and of alanine into dehydroalanine.
    Mozziconacci O; Kerwin BA; Schöneich C
    J Phys Chem B; 2011 Oct; 115(42):12287-305. PubMed ID: 21895001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydroalanine-based diubiquitin activity probes.
    Haj-Yahya N; Hemantha HP; Meledin R; Bondalapati S; Seenaiah M; Brik A
    Org Lett; 2014 Jan; 16(2):540-3. PubMed ID: 24364494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Myeloablative Drug Busulfan Converts Cysteine to Dehydroalanine and Lanthionine in Redoxins.
    Scian M; Guttman M; Bouldin SD; Outten CE; Atkins WM
    Biochemistry; 2016 Aug; 55(33):4720-30. PubMed ID: 27490699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro.
    Ma S; Caprioli RM; Hill KE; Burk RF
    J Am Soc Mass Spectrom; 2003 Jun; 14(6):593-600. PubMed ID: 12781460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of modified proteins via functionalization of dehydroalanine.
    Dadová J; Galan SR; Davis BG
    Curr Opin Chem Biol; 2018 Oct; 46():71-81. PubMed ID: 29913421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel oxidative modifications in redox-active cysteine residues.
    Jeong J; Jung Y; Na S; Jeong J; Lee E; Kim MS; Choi S; Shin DH; Paek E; Lee HY; Lee KJ
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000513. PubMed ID: 21148632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein ubiquitination via dehydroalanine: development and insights into the diastereoselective 1,4-addition step.
    Meledin R; Mali SM; Singh SK; Brik A
    Org Biomol Chem; 2016 Jun; 14(21):4817-23. PubMed ID: 27143624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of dehydroalanine residues in proteins and peptides: an improved method.
    Bartone NA; Bentley JD; Maclaren JA
    J Protein Chem; 1991 Dec; 10(6):603-7. PubMed ID: 1815586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational site-selective protein backbone α-deuteration.
    Galan SRG; Wickens JR; Dadova J; Ng WL; Zhang X; Simion RA; Quinlan R; Pires E; Paton RS; Caddick S; Chudasama V; Davis BG
    Nat Chem Biol; 2018 Oct; 14(10):955-963. PubMed ID: 30224694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desulfurization of cysteine-containing peptides resulting from sample preparation for protein characterization by mass spectrometry.
    Wang Z; Rejtar T; Zhou ZS; Karger BL
    Rapid Commun Mass Spectrom; 2010 Feb; 24(3):267-75. PubMed ID: 20049891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.