These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 33947549)
1. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Sordi MB; Cruz A; Fredel MC; Magini R; Sharpe PT Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112055. PubMed ID: 33947549 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
3. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
4. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
5. Scaffold Application for Bone Regeneration with Stem Cells in Dentistry: Literature Review. Saberian E; Jenča A; Zafari Y; Jenča A; Petrášová A; Zare-Zardini H; Jenčová J Cells; 2024 Jun; 13(12):. PubMed ID: 38920693 [TBL] [Abstract][Full Text] [Related]
6. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. Volkov AV; Muraev AA; Zharkova II; Voinova VV; Akoulina EA; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Asfarov TF; Stamboliev IA; Gazhva YV; Ryabova VM; Zlatev LH; Ivanov SY; Shaitan KV; Bonartsev AP Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110991. PubMed ID: 32994018 [TBL] [Abstract][Full Text] [Related]
7. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
8. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
9. Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Patel A; Zaky SH; Schoedel K; Li H; Sant V; Beniash E; Sfeir C; Stolz DB; Sant S Acta Biomater; 2020 Aug; 112():262-273. PubMed ID: 32497742 [TBL] [Abstract][Full Text] [Related]
10. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. Zhao C; Qazvini NT; Sadati M; Zeng Z; Huang S; De La Lastra AL; Zhang L; Feng Y; Liu W; Huang B; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Liu B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Chen X; Athiviraham A; Lee MJ; Wolf JM; Reid RR; Tirrell M; Huang W; de Pablo JJ; He TC ACS Appl Mater Interfaces; 2019 Mar; 11(9):8749-8762. PubMed ID: 30734555 [TBL] [Abstract][Full Text] [Related]
11. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. Abdollahiyan P; Baradaran B; de la Guardia M; Oroojalian F; Mokhtarzadeh A J Control Release; 2020 Dec; 328():514-531. PubMed ID: 32956710 [TBL] [Abstract][Full Text] [Related]
12. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
14. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. Frasca S; Norol F; Le Visage C; Collombet JM; Letourneur D; Holy X; Sari Ali E J Mater Sci Mater Med; 2017 Feb; 28(2):35. PubMed ID: 28110459 [TBL] [Abstract][Full Text] [Related]
15. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964 [TBL] [Abstract][Full Text] [Related]
16. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ansari S; Chen C; Xu X; Annabi N; Zadeh HH; Wu BM; Khademhosseini A; Shi S; Moshaverinia A Ann Biomed Eng; 2016 Jun; 44(6):1908-20. PubMed ID: 27009085 [TBL] [Abstract][Full Text] [Related]
17. Hydrogels provide microenvironments to mesenchymal stem cells for craniofacial bone regeneration: Review. Liu X; Fang T; Shi T; Wang Y; Liu G J Biomater Appl; 2023 Jul; 38(1):3-24. PubMed ID: 37291869 [TBL] [Abstract][Full Text] [Related]
18. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783 [TBL] [Abstract][Full Text] [Related]
19. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. Cui H; Yu Y; Li X; Sun Z; Ruan J; Wu Z; Qian J; Yin J J Mater Chem B; 2019 Dec; 7(45):7207-7217. PubMed ID: 31663588 [TBL] [Abstract][Full Text] [Related]
20. Tough, Flexible, and Bioactive Amphoteric Copolymer-Based Hydrogel for Bone Regeneration without Encapsulation of Seed Cells/Simulating Cues. Wang R; Che L; Feng Q; Cai K ACS Appl Mater Interfaces; 2022 Mar; 14(10):12038-12049. PubMed ID: 35238538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]