These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1010 related articles for article (PubMed ID: 33947564)

  • 1. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis.
    Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application.
    Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects.
    O'Shea DG; Hodgkinson T; Curtin CM; O'Brien FJ
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37852239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels.
    Kim SW; Kim DY; Roh HH; Kim HS; Lee JW; Lee KY
    Biomacromolecules; 2019 May; 20(5):1860-1866. PubMed ID: 30912929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering.
    Janarthanan G; Shin HS; Kim IG; Ji P; Chung EJ; Lee C; Noh I
    Biofabrication; 2020 Sep; 12(4):045026. PubMed ID: 32629438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of the Mechanical Properties of the 3D Printed Gelatin/Hyaluronic Acid Scaffolds on hMSCs Differentiation Towards Chondrogenesis.
    Choi K; Park CY; Choi JS; Kim YJ; Chung S; Lee S; Kim CH; Park SJ
    Tissue Eng Regen Med; 2023 Jul; 20(4):593-605. PubMed ID: 37195569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting.
    Hossain Rakin R; Kumar H; Rajeev A; Natale G; Menard F; Li ITS; Kim K
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tethered TGF-β1 in a Hyaluronic Acid-Based Bioink for Bioprinting Cartilaginous Tissues.
    Hauptstein J; Forster L; Nadernezhad A; Groll J; Teßmar J; Blunk T
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering.
    Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional bioprinting of polysaccharide-based self-healing hydrogels with dual cross-linking.
    Kim HS; Kim C; Lee KY
    J Biomed Mater Res A; 2022 Apr; 110(4):761-772. PubMed ID: 34708518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable and self-healable hyaluronate-based hydrogels for three-dimensional bioprinting.
    Kim HS; Lee KY
    Carbohydr Polym; 2022 Nov; 295():119846. PubMed ID: 35988998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Bioprinting with Visible Light Cross-Linkable Mucin-Hyaluronic Acid Composite Bioink for Lung Tissue Engineering.
    Sasikumar SC; Goswami U; Raichur AM
    ACS Appl Bio Mater; 2024 Aug; 7(8):5411-5422. PubMed ID: 38996006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering.
    Noh I; Kim N; Tran HN; Lee J; Lee C
    Biomater Res; 2019; 23():3. PubMed ID: 30774971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioink Platform Utilizing Dual-Stage Crosslinking of Hyaluronic Acid Tailored for Chondrogenic Differentiation of Mesenchymal Stromal Cells.
    Hauptstein J; Forster L; Nadernezhad A; Horder H; Stahlhut P; Groll J; Blunk T; Teßmar J
    Macromol Biosci; 2022 Feb; 22(2):e2100331. PubMed ID: 34779129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.