BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 33947817)

  • 1. CAG RNAs induce DNA damage and apoptosis by silencing
    Peng S; Guo P; Lin X; An Y; Sze KH; Lau MHY; Chen ZS; Wang Q; Li W; Sun JK; Ma SY; Chan TF; Lau KF; Ngo JCK; Kwan KM; Wong CH; Lam SL; Zimmerman SC; Tuccinardi T; Zuo Z; Au-Yeung HY; Chow HM; Chan HYE
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33947817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA toxicity induced by expanded CAG repeats in Huntington's disease.
    Martí E
    Brain Pathol; 2016 Nov; 26(6):779-786. PubMed ID: 27529325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Transfer of Polyglutamine and CAG-Repeat RNA in Extracellular Vesicles in Huntington's Disease: Background and Evaluation in Cell Culture.
    Zhang X; Abels ER; Redzic JS; Margulis J; Finkbeiner S; Breakefield XO
    Cell Mol Neurobiol; 2016 Apr; 36(3):459-70. PubMed ID: 26951563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of expanded CAG transcripts triggers nucleolar stress in Huntington's disease.
    Tsoi H; Chan HY
    Cerebellum; 2013 Jun; 12(3):310-2. PubMed ID: 23315009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference.
    Murmann AE; Patel M; Jeong SY; Bartom ET; Jennifer Morton A; Peter ME
    Cell Death Dis; 2022 Dec; 13(12):1078. PubMed ID: 36585400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity.
    Bañez-Coronel M; Porta S; Kagerbauer B; Mateu-Huertas E; Pantano L; Ferrer I; Guzmán M; Estivill X; Martí E
    PLoS Genet; 2012; 8(2):e1002481. PubMed ID: 22383888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of RAN-mediated toxicity in Huntington's disease knock-in mice.
    Yang S; Yang H; Huang L; Chen L; Qin Z; Li S; Li XJ
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4411-4417. PubMed ID: 32029588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels.
    Rué L; Bañez-Coronel M; Creus-Muncunill J; Giralt A; Alcalá-Vida R; Mentxaka G; Kagerbauer B; Zomeño-Abellán MT; Aranda Z; Venturi V; Pérez-Navarro E; Estivill X; Martí E
    J Clin Invest; 2016 Nov; 126(11):4319-4330. PubMed ID: 27721240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington's disease-like 2 mice.
    Wilburn B; Rudnicki DD; Zhao J; Weitz TM; Cheng Y; Gu X; Greiner E; Park CS; Wang N; Sopher BL; La Spada AR; Osmand A; Margolis RL; Sun YE; Yang XW
    Neuron; 2011 May; 70(3):427-40. PubMed ID: 21555070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.
    Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice.
    Gu X; Richman J; Langfelder P; Wang N; Zhang S; Bañez-Coronel M; Wang HB; Yang L; Ramanathan L; Deng L; Park CS; Choi CR; Cantle JP; Gao F; Gray M; Coppola G; Bates GP; Ranum LPW; Horvath S; Colwell CS; Yang XW
    Neuron; 2022 Apr; 110(7):1173-1192.e7. PubMed ID: 35114102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal aggregates are associated with phenotypic onset in the R6/2 Huntington's disease transgenic mouse.
    Cowin RM; Roscic A; Bui N; Graham D; Paganetti P; Jankowsky JL; Weiss A; Paylor R
    Behav Brain Res; 2012 Apr; 229(2):308-19. PubMed ID: 22306231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PolyQ-independent toxicity associated with novel translational products from CAG repeat expansions.
    Rudich P; Watkins S; Lamitina T
    PLoS One; 2020; 15(4):e0227464. PubMed ID: 32240172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription elongation and tissue-specific somatic CAG instability.
    Goula AV; Stys A; Chan JP; Trottier Y; Festenstein R; Merienne K
    PLoS Genet; 2012; 8(11):e1003051. PubMed ID: 23209427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial miRNAs targeting CAG repeat expansion in ORFs cause rapid deadenylation and translation inhibition of mutant transcripts.
    Ciesiolka A; Stroynowska-Czerwinska A; Joachimiak P; Ciolak A; Kozlowska E; Michalak M; Dabrowska M; Olejniczak M; Raczynska KD; Zielinska D; Wozna-Wysocka M; Krzyzosiak WJ; Fiszer A
    Cell Mol Life Sci; 2021 Feb; 78(4):1577-1596. PubMed ID: 32696070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease.
    Cummings DM; Alaghband Y; Hickey MA; Joshi PR; Hong SC; Zhu C; Ando TK; André VM; Cepeda C; Watson JB; Levine MS
    J Neurophysiol; 2012 Jan; 107(2):677-91. PubMed ID: 22072510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The long non-coding RNA NEAT1 is elevated in polyglutamine repeat expansion diseases and protects from disease gene-dependent toxicities.
    Cheng C; Spengler RM; Keiser MS; Monteys AM; Rieders JM; Ramachandran S; Davidson BL
    Hum Mol Genet; 2018 Dec; 27(24):4303-4314. PubMed ID: 30239724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats.
    Urbanek MO; Jazurek M; Switonski PM; Figura G; Krzyzosiak WJ
    Biochim Biophys Acta; 2016 Sep; 1862(9):1513-20. PubMed ID: 27239700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington's disease.
    O'Reilly D; Belgrad J; Ferguson C; Summers A; Sapp E; McHugh C; Mathews E; Boudi A; Buchwald J; Ly S; Moreno D; Furgal R; Luu E; Kennedy Z; Hariharan V; Monopoli K; Yang XW; Carroll J; DiFiglia M; Aronin N; Khvorova A
    Mol Ther; 2023 Jun; 31(6):1661-1674. PubMed ID: 37177784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.