These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33947820)
1. Constructing Turing complete Euler flows in dimension 3. Cardona R; Miranda E; Peralta-Salas D; Presas F Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33947820 [TBL] [Abstract][Full Text] [Related]
2. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations. Fouxon I; Oz Y Phys Rev Lett; 2008 Dec; 101(26):261602. PubMed ID: 19437634 [TBL] [Abstract][Full Text] [Related]
3. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations. Gibbon JD; Pal N; Gupta A; Pandit R Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309 [TBL] [Abstract][Full Text] [Related]
4. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space. Kavvas ML; Ercan A Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242 [TBL] [Abstract][Full Text] [Related]
5. Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem. Ohkitani K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033010. PubMed ID: 26465559 [TBL] [Abstract][Full Text] [Related]
6. Relaxed solutions for incompressible inviscid flows: a variational and gravitational approximation to the initial value problem. Brenier Y; Moyano I Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210078. PubMed ID: 35094558 [TBL] [Abstract][Full Text] [Related]
7. Undecidability of the spectral gap. Cubitt TS; Perez-Garcia D; Wolf MM Nature; 2015 Dec; 528(7581):207-11. PubMed ID: 26659181 [TBL] [Abstract][Full Text] [Related]
8. Helicity and singular structures in fluid dynamics. Moffatt HK Proc Natl Acad Sci U S A; 2014 Mar; 111(10):3663-70. PubMed ID: 24520175 [TBL] [Abstract][Full Text] [Related]
9. Efficient quantum algorithm for dissipative nonlinear differential equations. Liu JP; Kolden HØ; Krovi HK; Loureiro NF; Trivisa K; Childs AM Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34446548 [TBL] [Abstract][Full Text] [Related]
10. Energy balance for forced two-dimensional incompressible ideal fluid flow. Lopes Filho MC; Nussenzveig Lopes HJ Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210095. PubMed ID: 35094564 [TBL] [Abstract][Full Text] [Related]
11. Wavelet-based regularization of the Galerkin truncated three-dimensional incompressible Euler flows. Farge M; Okamoto N; Schneider K; Yoshimatsu K Phys Rev E; 2017 Dec; 96(6-1):063119. PubMed ID: 29347383 [TBL] [Abstract][Full Text] [Related]
12. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics. Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701 [TBL] [Abstract][Full Text] [Related]
13. Random changes of flow topology in two-dimensional and geophysical turbulence. Bouchet F; Simonnet E Phys Rev Lett; 2009 Mar; 102(9):094504. PubMed ID: 19392527 [TBL] [Abstract][Full Text] [Related]
15. Bardos CW; Titi ES Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210073. PubMed ID: 35034497 [TBL] [Abstract][Full Text] [Related]
16. Euler and Navier-Stokes equations on the hyperbolic plane. Khesin B; Misiolek G Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18324-6. PubMed ID: 23091015 [TBL] [Abstract][Full Text] [Related]
17. On homogeneous second order linear general quantum difference equations. Faried N; Shehata EM; El Zafarani RM J Inequal Appl; 2017; 2017(1):198. PubMed ID: 28904519 [TBL] [Abstract][Full Text] [Related]
18. Perturbational blowup solutions to the compressible Euler equations with damping. Cheung KL Springerplus; 2016; 5():196. PubMed ID: 27026892 [TBL] [Abstract][Full Text] [Related]
19. A Source Term Approach for Generation of One-way Acoustic Waves in the Euler and Navier-Stokes equations. Maeda K; Colonius T Wave Motion; 2017 Dec; 75():36-49. PubMed ID: 30270952 [TBL] [Abstract][Full Text] [Related]
20. Self-attenuation of extreme events in Navier-Stokes turbulence. Buaria D; Pumir A; Bodenschatz E Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]