BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33947863)

  • 1. Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures.
    Franciosa G; Smits JGA; Minuzzo S; Martinez-Val A; Indraccolo S; Olsen JV
    Nat Commun; 2021 May; 12(1):2507. PubMed ID: 33947863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.
    Knoechel B; Roderick JE; Williamson KE; Zhu J; Lohr JG; Cotton MJ; Gillespie SM; Fernandez D; Ku M; Wang H; Piccioni F; Silver SJ; Jain M; Pearson D; Kluk MJ; Ott CJ; Shultz LD; Brehm MA; Greiner DL; Gutierrez A; Stegmaier K; Kung AL; Root DE; Bradner JE; Aster JC; Kelliher MA; Bernstein BE
    Nat Genet; 2014 Apr; 46(4):364-70. PubMed ID: 24584072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model.
    Cullion K; Draheim KM; Hermance N; Tammam J; Sharma VM; Ware C; Nikov G; Krishnamoorthy V; Majumder PK; Kelliher MA
    Blood; 2009 Jun; 113(24):6172-81. PubMed ID: 19246562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia.
    Marchesini M; Gherli A; Montanaro A; Patrizi L; Sorrentino C; Pagliaro L; Rompietti C; Kitara S; Heit S; Olesen CE; Møller JV; Savi M; Bocchi L; Vilella R; Rizzi F; Baglione M; Rastelli G; Loiacono C; La Starza R; Mecucci C; Stegmaier K; Aversa F; Stilli D; Lund Winther AM; Sportoletti P; Bublitz M; Dalby-Brown W; Roti G
    Cell Chem Biol; 2020 Jun; 27(6):678-697.e13. PubMed ID: 32386594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Rho GTPase expression in T-ALL identifies RhoU as a target for Notch involved in T-ALL cell migration.
    Bhavsar PJ; Infante E; Khwaja A; Ridley AJ
    Oncogene; 2013 Jan; 32(2):198-208. PubMed ID: 22349824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the NOTCH and mTOR pathways by nelfinavir as a novel treatment for T cell acute lymphoblastic leukemia.
    Chang YS; Gills JJ; Kawabata S; Onozawa M; Della Gatta G; Ferrando AA; Aplan PD; Dennis PA
    Int J Oncol; 2023 Nov; 63(5):. PubMed ID: 37800623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia.
    Gianni F; Belver L; Ferrando A
    Cold Spring Harb Perspect Med; 2020 Mar; 10(3):. PubMed ID: 31570389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-secretase inhibitors: Notch so bad.
    Grosveld GC
    Nat Med; 2009 Jan; 15(1):20-1. PubMed ID: 19129776
    [No Abstract]   [Full Text] [Related]  

  • 9. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species.
    Giambra V; Jenkins CR; Wang H; Lam SH; Shevchuk OO; Nemirovsky O; Wai C; Gusscott S; Chiang MY; Aster JC; Humphries RK; Eaves C; Weng AP
    Nat Med; 2012 Nov; 18(11):1693-8. PubMed ID: 23086478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance.
    van der Zwet JCG; Buijs-Gladdines JGCAM; Cordo' V; Debets DO; Smits WK; Chen Z; Dylus J; Zaman GJR; Altelaar M; Oshima K; Bornhauser B; Bourquin JP; Cools J; Ferrando AA; Vormoor J; Pieters R; Vormoor B; Meijerink JPP
    Leukemia; 2021 Dec; 35(12):3394-3405. PubMed ID: 34007050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can one target T-cell ALL?
    Ferrando A
    Best Pract Res Clin Haematol; 2018 Dec; 31(4):361-366. PubMed ID: 30466748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia.
    Baran N; Lodi A; Dhungana Y; Herbrich S; Collins M; Sweeney S; Pandey R; Skwarska A; Patel S; Tremblay M; Kuruvilla VM; Cavazos A; Kaplan M; Warmoes MO; Veiga DT; Furudate K; Rojas-Sutterin S; Haman A; Gareau Y; Marinier A; Ma H; Harutyunyan K; Daher M; Garcia LM; Al-Atrash G; Piya S; Ruvolo V; Yang W; Shanmugavelandy SS; Feng N; Gay J; Du D; Yang JJ; Hoff FW; Kaminski M; Tomczak K; Eric Davis R; Herranz D; Ferrando A; Jabbour EJ; Emilia Di Francesco M; Teachey DT; Horton TM; Kornblau S; Rezvani K; Sauvageau G; Gagea M; Andreeff M; Takahashi K; Marszalek JR; Lorenzi PL; Yu J; Tiziani S; Hoang T; Konopleva M
    Nat Commun; 2022 May; 13(1):2801. PubMed ID: 35589701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting hyperactive platelet-derived growth factor receptor-β signaling in T-cell acute lymphoblastic leukemia and lymphoma.
    De Coninck S; De Smedt R; Lintermans B; Reunes L; Kosasih HJ; Reekmans A; Brown LM; Van Roy N; Palhais B; Roels J; Van der Linden M; Van Dorpe J; Ntziachristos P; Van Delft FW; Mansour MR; Pieters T; Lammens T; De Moerloose B; De Bock CE; Goossens S; Van Vlierberghe P
    Haematologica; 2024 May; 109(5):1373-1384. PubMed ID: 37941480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL.
    Kampen KR; Sulima SO; Verbelen B; Girardi T; Vereecke S; Rinaldi G; Verbeeck J; Op de Beeck J; Uyttebroeck A; Meijerink JPP; Moorman AV; Harrison CJ; Spincemaille P; Cools J; Cassiman D; Fendt SM; Vermeersch P; De Keersmaecker K
    Leukemia; 2019 Feb; 33(2):319-332. PubMed ID: 29930300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia.
    Pocock R; Farah N; Richardson SE; Mansour MR
    Br J Haematol; 2021 Jul; 194(1):28-43. PubMed ID: 33942287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel chalcone derivative that inhibits Notch signaling in T-cell acute lymphoblastic leukemia.
    Mori M; Tottone L; Quaglio D; Zhdanovskaya N; Ingallina C; Fusto M; Ghirga F; Peruzzi G; Crestoni ME; Simeoni F; Giulimondi F; Talora C; Botta B; Screpanti I; Palermo R
    Sci Rep; 2017 May; 7(1):2213. PubMed ID: 28526832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clonal evolution dissection reveals that a high MSI2 level promotes chemoresistance in T-cell acute lymphoblastic leukemia.
    Zhang J; Duan Y; Wu P; Chang Y; Wang Y; Hu T; Liu C; Chen X; Zong S; Chen X; Wu Y; Jin L; Lan Y; Liu X; Cheng X; Ding F; Li T; Chen X; Guo Y; Chen Y; Yang W; Zhang L; Zou Y; Cheng T; Zhu X; Zhang Y
    Blood; 2024 Jan; 143(4):320-335. PubMed ID: 37801708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human T-ALL Xenografts.
    Fuentes P; Toribio ML; González-García S
    Methods Mol Biol; 2021; 2185():215-239. PubMed ID: 33165851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cell-leukemia interactions remodel drug responses, uncovering T-ALL vulnerabilities.
    Cappelli LV; Fiore D; Phillip JM; Yoffe L; Di Giacomo F; Chiu W; Hu Y; Kayembe C; Ginsberg M; Consolino L; Barcia Duran JG; Zamponi N; Melnick AM; Boccalatte F; Tam W; Elemento O; Chiaretti S; Guarini A; Foà R; Cerchietti L; Rafii S; Inghirami G
    Blood; 2023 Feb; 141(5):503-518. PubMed ID: 35981563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma.
    Silva A; Almeida ARM; Cachucho A; Neto JL; Demeyer S; de Matos M; Hogan T; Li Y; Meijerink J; Cools J; Grosso AR; Seddon B; Barata JT
    Blood; 2021 Sep; 138(12):1040-1052. PubMed ID: 33970999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.