These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33947908)

  • 1. Relaxation capacity of cartilage is a critical factor in rate- and integrity-dependent fracture.
    Han G; Chowdhury U; Eriten M; Henak CR
    Sci Rep; 2021 May; 11(1):9527. PubMed ID: 33947908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate-dependent crack nucleation in cartilage under microindentation.
    Han G; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2019 Aug; 96():186-192. PubMed ID: 31054513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local and global measurements show that damage initiation in articular cartilage is inhibited by the surface layer and has significant rate dependence.
    Bartell LR; Xu MC; Bonassar LJ; Cohen I
    J Biomech; 2018 Apr; 72():63-70. PubMed ID: 29526459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A qualitative analysis of crack propagation in articular cartilage at varying rates of tensile loading.
    Stok K; Oloyede A
    Connect Tissue Res; 2003; 44(2):109-20. PubMed ID: 12745678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conceptual fracture parameters for articular cartilage.
    Stok K; Oloyede A
    Clin Biomech (Bristol, Avon); 2007 Jul; 22(6):725-35. PubMed ID: 17493717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture of articular cartilage.
    Chin-Purcell MV; Lewis JL
    J Biomech Eng; 1996 Nov; 118(4):545-56. PubMed ID: 8950659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimentally produced fractures of articular cartilage and bone. The effects of shear forces on the pig knee.
    Tomatsu T; Imai N; Takeuchi N; Takahashi K; Kimura N
    J Bone Joint Surg Br; 1992 May; 74(3):457-62. PubMed ID: 1587902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage stress-relaxation is affected by both the charge concentration and valence of solution cations.
    June RK; Mejia KL; Barone JR; Fyhrie DP
    Osteoarthritis Cartilage; 2009 May; 17(5):669-76. PubMed ID: 19010694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microindentation Technique to Create Localized Cartilage Microfractures.
    Chawla D; Han G; Eriten M; Henak CR
    Curr Protoc; 2021 Oct; 1(10):e280. PubMed ID: 34670019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the variation of loading frequency on surface failure of bovine articular cartilage.
    Sadeghi H; Shepherd DET; Espino DM
    Osteoarthritis Cartilage; 2015 Dec; 23(12):2252-2258. PubMed ID: 26074363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.
    McGann ME; Bonitsky CM; Ovaert TC; Wagner DR
    J Mech Behav Biomed Mater; 2014 Jun; 34():264-72. PubMed ID: 24631625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen fibres determine the crack morphology in articular cartilage.
    Moo EK; Tanska P; Federico S; Al-Saffar Y; Herzog W; Korhonen RK
    Acta Biomater; 2021 May; 126():301-314. PubMed ID: 33757903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling.
    Orozco GA; Tanska P; Gustafsson A; Korhonen RK; Isaksson H
    J Mech Behav Biomed Mater; 2022 Jul; 131():105227. PubMed ID: 35477071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-dependent adhesion of cartilage and its relation to relaxation mechanisms.
    Han G; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103493. PubMed ID: 31634661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates.
    DiSilvestro MR; Zhu Q; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosaminoglycan depletion increases energy dissipation in articular cartilage under high-frequency loading.
    Han G; Boz U; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2020 Oct; 110():103876. PubMed ID: 32957186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of macro-cracks on the load bearing capacity of articular cartilage.
    Komeili A; Chau W; Herzog W
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1371-1381. PubMed ID: 30993486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.