These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33947908)

  • 21. Functional assessment of strains around a full-thickness and critical sized articular cartilage defect under compressive loading using MRI.
    Zevenbergen L; Gsell W; Chan DD; Vander Sloten J; Himmelreich U; Neu CP; Jonkers I
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1710-1721. PubMed ID: 30195045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound speed varies in articular cartilage under indentation loading.
    Lötjönen P; Julkunen P; Tiitu V; Jurvelin JS; Töyräs J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2772-80. PubMed ID: 23443716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical properties of cracked articular cartilage under uniaxial creep and cyclic tensile loading.
    Si Y; Tan Y; Gao L; Li R; Zhang C; Gao H; Zhang X
    J Biomech; 2022 Mar; 134():110988. PubMed ID: 35151037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental Study on Creep Characteristics of Microdefect Articular Cartilages in the Damaged Early Stage.
    Gong H; Men Y; Yang X; Li X; Zhang C
    J Healthc Eng; 2019; 2019():8526436. PubMed ID: 31827742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact induced failure of cartilage-on-bone following creep loading: a microstructural and fracture mechanics study.
    Thambyah A; Zhang G; Kim W; Broom ND
    J Mech Behav Biomed Mater; 2012 Oct; 14():239-47. PubMed ID: 22784816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prestrain decreases cartilage susceptibility to injury by ramp compression in vitro.
    Morel V; Merçay A; Quinn TM
    Osteoarthritis Cartilage; 2005 Nov; 13(11):964-70. PubMed ID: 16165378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical loading: bone remodeling and cartilage maintenance.
    Yokota H; Leong DJ; Sun HB
    Curr Osteoporos Rep; 2011 Dec; 9(4):237-42. PubMed ID: 21858507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local tissue properties of human osteoarthritic cartilage correlate with magnetic resonance T(1) rho relaxation times.
    Tang SY; Souza RB; Ries M; Hansma PK; Alliston T; Li X
    J Orthop Res; 2011 Sep; 29(9):1312-9. PubMed ID: 21445940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.
    Suh JK; Bai S
    J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration.
    DiSilvestro MR; Suh JK
    Ann Biomed Eng; 2002 Jun; 30(6):792-800. PubMed ID: 12220079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A compression system for studying depth-dependent mechanical properties of articular cartilage under dynamic loading conditions.
    Komeili A; Abusara Z; Federico S; Herzog W
    Med Eng Phys; 2018 Oct; 60():103-108. PubMed ID: 30061065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cartilage stress-relaxation proceeds slower at higher compressive strains.
    June RK; Ly S; Fyhrie DP
    Arch Biochem Biophys; 2009 Mar; 483(1):75-80. PubMed ID: 19111671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage.
    Zevenbergen L; Gsell W; Cai L; Chan DD; Famaey N; Vander Sloten J; Himmelreich U; Neu CP; Jonkers I
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1699-1709. PubMed ID: 30172835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why is the adolescent joint particularly susceptible to osteochondral shear fracture?
    Flachsmann R; Broom ND; Hardy AE; Moltschaniwskyj G
    Clin Orthop Relat Res; 2000 Dec; (381):212-21. PubMed ID: 11127658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.