These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 33948344)

  • 21. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review.
    Akram F; Ikram Ul Haq ; Ahmed Z; Khan H; Ali MS
    Protein Pept Lett; 2020; 27(10):931-944. PubMed ID: 32264803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational prediction of CRISPR-impaired non-coding regulatory regions.
    Baumgarten N; Schmidt F; Wegner M; Hebel M; Kaulich M; Schulz MH
    Biol Chem; 2021 Jul; 402(8):973-982. PubMed ID: 33660495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering T Cells Using CRISPR/Cas9 for Cancer Therapy.
    Zhang X; Cheng C; Sun W; Wang H
    Methods Mol Biol; 2020; 2115():419-433. PubMed ID: 32006414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research.
    Yang Y; Xu J; Ge S; Lai L
    Front Med (Lausanne); 2021; 8():649896. PubMed ID: 33748164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection.
    Kim HS; Lee K; Bae S; Park J; Lee CK; Kim M; Kim E; Kim M; Kim S; Kim C; Kim JS
    J Biol Chem; 2017 Jun; 292(25):10664-10671. PubMed ID: 28446605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing custom CRISPR libraries for hypothesis-driven drug target discovery.
    Iyer VS; Jiang L; Shen Y; Boddul SV; Panda SK; Kasza Z; Schmierer B; Wermeling F
    Comput Struct Biotechnol J; 2020; 18():2237-2246. PubMed ID: 32952937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements.
    Liu SY; Yi GQ; Tang ZL; Chen B
    Yi Chuan; 2020 May; 42(5):435-443. PubMed ID: 32431295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment.
    Liu B; Saber A; Haisma HJ
    Drug Discov Today; 2019 Apr; 24(4):955-970. PubMed ID: 30849442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions.
    Hazafa A; Mumtaz M; Farooq MF; Bilal S; Chaudhry SN; Firdous M; Naeem H; Ullah MO; Yameen M; Mukhtiar MS; Zafar F
    Life Sci; 2020 Dec; 263():118525. PubMed ID: 33031826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library.
    Zhu S; Li W; Liu J; Chen CH; Liao Q; Xu P; Xu H; Xiao T; Cao Z; Peng J; Yuan P; Brown M; Liu XS; Wei W
    Nat Biotechnol; 2016 Dec; 34(12):1279-1286. PubMed ID: 27798563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles.
    Dai WJ; Zhu LY; Yan ZY; Xu Y; Wang QL; Lu XJ
    Mol Ther Nucleic Acids; 2016; 5(8):e349. PubMed ID: 28131272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Livestock Gene Editing by One-step Embryo Manipulation.
    Navarro-Serna S; Vilarino M; Park I; Gadea J; Ross PJ
    J Equine Vet Sci; 2020 Jun; 89():103025. PubMed ID: 32563448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Establishment of TP53-knockout canine cells using optimized CRIPSR/Cas9 vector system for canine cancer research.
    Eun K; Park MG; Jeong YW; Jeong YI; Hyun SH; Hwang WS; Kim SH; Kim H
    BMC Biotechnol; 2019 Jan; 19(1):1. PubMed ID: 30606176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid Generation of Long Noncoding RNA Knockout Mice Using CRISPR/Cas9 Technology.
    Hansmeier NR; Widdershooven PJM; Khani S; Kornfeld JW
    Noncoding RNA; 2019 Jan; 5(1):. PubMed ID: 30678101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic screens and functional genomics using CRISPR/Cas9 technology.
    Hartenian E; Doench JG
    FEBS J; 2015 Apr; 282(8):1383-93. PubMed ID: 25728500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of CRISPR/Cas9 in plant biology.
    Liu X; Wu S; Xu J; Sui C; Wei J
    Acta Pharm Sin B; 2017 May; 7(3):292-302. PubMed ID: 28589077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.
    Ren J; Zhao Y
    Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of the CRISPR/Cas9 system in murine cancer modeling.
    Zuckermann M; Kawauchi D; Gronych J
    Brief Funct Genomics; 2017 Jan; 16(1):25-33. PubMed ID: 27273122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.