BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 33948351)

  • 1. Cilostazol eliminates radiation-resistant glioblastoma by re-evoking big conductance calcium-activated potassium channel activity.
    Liu CC; Wu CL; Yeh IC; Wu SN; Sze CI; Gean PW
    Am J Cancer Res; 2021; 11(4):1148-1169. PubMed ID: 33948351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary GH3 cells and pheochromocytoma PC12 cells.
    Wu SN; Liu SI; Huang MH
    Endocrinology; 2004 Mar; 145(3):1175-84. PubMed ID: 14645120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-activated potassium channels BK and IK1 are functionally expressed in human gliomas but do not regulate cell proliferation.
    Abdullaev IF; Rudkouskaya A; Mongin AA; Kuo YH
    PLoS One; 2010 Aug; 5(8):e12304. PubMed ID: 20808839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.
    Rosa P; Sforna L; Carlomagno S; Mangino G; Miscusi M; Pessia M; Franciolini F; Calogero A; Catacuzzeno L
    J Cell Physiol; 2017 Sep; 232(9):2478-2488. PubMed ID: 27606467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cilostazol induces vasodilation through the activation of Ca(2+)-activated K(+) channels in aortic smooth muscle.
    Li H; Hong DH; Son YK; Na SH; Jung WK; Bae YM; Seo EY; Kim SJ; Choi IW; Park WS
    Vascul Pharmacol; 2015 Jul; 70():15-22. PubMed ID: 25748552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Cilostazol eliminates radiation-resistant glioblastoma by re-evoking big conductance calcium-activated potassium channel activity.
    Liu CC; Wu CL; Yeh IC; Wu SN; Sze CI; Gean PW
    Am J Cancer Res; 2021; 11(9):4638-4640. PubMed ID: 34659911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells.
    Rosa P; Catacuzzeno L; Sforna L; Mangino G; Carlomagno S; Mincione G; Petrozza V; Ragona G; Franciolini F; Calogero A
    J Cell Physiol; 2018 Sep; 233(9):6866-6877. PubMed ID: 29319175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfiram Sensitizes a Therapeutic-Resistant Glioblastoma to the TGF-β Receptor Inhibitor.
    Liu CC; Wu CL; Lin MX; Sze CI; Gean PW
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionizing radiation induces migration of glioblastoma cells by activating BK K(+) channels.
    Steinle M; Palme D; Misovic M; Rudner J; Dittmann K; Lukowski R; Ruth P; Huber SM
    Radiother Oncol; 2011 Oct; 101(1):122-6. PubMed ID: 21704404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells.
    Edalat L; Stegen B; Klumpp L; Haehl E; Schilbach K; Lukowski R; Kühnle M; Bernhardt G; Buschauer A; Zips D; Ruth P; Huber SM
    Oncotarget; 2016 Mar; 7(12):14259-78. PubMed ID: 26893360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia, Ion Channels and Glioblastoma Malignancy.
    Michelucci A; Sforna L; Franciolini F; Catacuzzeno L
    Biomolecules; 2023 Dec; 13(12):. PubMed ID: 38136613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity.
    Bury M; Girault A; Mégalizzi V; Spiegl-Kreinecker S; Mathieu V; Berger W; Evidente A; Kornienko A; Gailly P; Vandier C; Kiss R
    Cell Death Dis; 2013 Mar; 4(3):e561. PubMed ID: 23538442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Novel Activators of Large-Conductance Calcium-Activated Potassium Channels for the Treatment of Cerebellar Ataxia.
    Srinivasan SR; Huang H; Chang WC; Nasburg JA; Nguyen HM; Strassmaier T; Wulff H; Shakkottai VG
    Mol Pharmacol; 2022 Jul; 102(1):438-449. PubMed ID: 35489717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells.
    Conti S; Vexler A; Edry-Botzer L; Kalich-Philosoph L; Corn BW; Shtraus N; Meir Y; Hagoel L; Shtabsky A; Marmor S; Earon G; Lev-Ari S
    PLoS One; 2018; 13(7):e0198627. PubMed ID: 29969452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells.
    Vengoji R; Macha MA; Nimmakayala RK; Rachagani S; Siddiqui JA; Mallya K; Gorantla S; Jain M; Ponnusamy MP; Batra SK; Shonka N
    J Exp Clin Cancer Res; 2019 Jun; 38(1):266. PubMed ID: 31215502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genistein inhibits radiation-induced invasion and migration of glioblastoma cells by blocking the DNA-PKcs/Akt2/Rac1 signaling pathway.
    Liu X; Wang Q; Liu B; Zheng X; Li P; Zhao T; Jin X; Ye F; Zhang P; Chen W; Li Q
    Radiother Oncol; 2021 Feb; 155():93-104. PubMed ID: 33129924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of large-conductance calcium-activated potassium channels promotes vascular remodelling through the CTRP7-mediated PI3K/Akt signaling pathway.
    Bi J; Duan Y; Wang M; He C; Li X; Zhang X; Tao Y; Du Y; Liu H
    Acta Biochim Biophys Sin (Shanghai); 2022 Dec; 54(12):1-11. PubMed ID: 36514218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance.
    Hersh DS; Harder BG; Roos A; Peng S; Heath JE; Legesse T; Kim AJ; Woodworth GF; Tran NL; Winkles JA
    Neuro Oncol; 2018 Sep; 20(10):1321-1330. PubMed ID: 29897522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dilation of porcine retinal arterioles to cilostazol: roles of eNOS phosphorylation via cAMP/protein kinase A and AMP-activated protein kinase and potassium channels.
    Tanano I; Nagaoka T; Omae T; Ishibazawa A; Kamiya T; Ono S; Yoshida A
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1443-9. PubMed ID: 23341020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of BK channel splice variants using membrane potential dyes.
    Saleem F; Rowe IC; Shipston MJ
    Br J Pharmacol; 2009 Jan; 156(1):143-52. PubMed ID: 19068078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.