These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33948851)

  • 1. Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp.
    Song Y; Qu Y; Cao X; Zhang W; Zhang F; Linhardt RJ; Yang Q
    In Vitro Cell Dev Biol Anim; 2021 May; 57(5):539-549. PubMed ID: 33948851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular localization of debromohymenialdisine and hymenialdisine in the marine sponge Axinella sp. using a newly developed cell purification protocol.
    Song YF; Qu Y; Cao XP; Zhang W
    Mar Biotechnol (NY); 2011 Oct; 13(5):868-82. PubMed ID: 21246234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors.
    Schröder HC; Brümmer F; Fattorusso E; Aiello A; Menna M; de Rosa S; Batel R; Müller WE
    Prog Mol Subcell Biol; 2003; 37():163-97. PubMed ID: 15825644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive alkaloids from the tropical marine sponge Axinella carteri.
    Supriyono A; Schwarz B; Wray V; Witte L; Müller WE; van Soest R; Sumaryono W; Proksch P
    Z Naturforsch C J Biosci; 1995; 50(9-10):669-74. PubMed ID: 8579685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primmorphs from seven marine sponges: formation and structure.
    Sipkema D; van Wielink R; van Lammeren AA; Tramper J; Osinga R; Wijffels RH
    J Biotechnol; 2003 Jan; 100(2):127-39. PubMed ID: 12423907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical localization of an N-acetyl amino-carbohydrate specific lectin (ACL-I) of the marine sponge Axinella corrugata.
    Dresch RR; Zanetti GD; Kanan JH; Mothes B; Lerner CB; Trindade VM; Henriques AT; Vozári-Hampe MM
    Acta Histochem; 2011 Oct; 113(6):671-4. PubMed ID: 20727574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara.
    Müller WE; Böhm M; Batel R; De Rosa S; Tommonaro G; Müller IM; Schröder HC
    J Nat Prod; 2000 Aug; 63(8):1077-81. PubMed ID: 10978201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insight into marine alkaloid metabolic pathways: revisiting oroidin biosynthesis.
    Genta-Jouve G; Cachet N; Holderith S; Oberhänsli F; Teyssié JL; Jeffree R; Al Mourabit A; Thomas OP
    Chembiochem; 2011 Oct; 12(15):2298-301. PubMed ID: 21882331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term cultivation of primmorphs from freshwater Baikal sponges Lubomirskia baikalensis.
    Chernogor LI; Denikina NN; Belikov SI; Ereskovsky AV
    Mar Biotechnol (NY); 2011 Aug; 13(4):782-92. PubMed ID: 21221695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death.
    Custodio MR; Prokic I; Steffen R; Koziol C; Borojevic R; Brümmer F; Nickel M; Müller WE
    Mech Ageing Dev; 1998 Sep; 105(1-2):45-59. PubMed ID: 9922118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axinellamine E, One New Pyrrololactam Alkaloid from the South China Sea Sponge Axinella sp.
    Xu L; Wang P; Yuan S; Yu L; Zhao J; Li G; Zhang G; Luo L
    Chem Biodivers; 2022 Jul; 19(7):e202200311. PubMed ID: 35674487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation of Marine Sponges.
    Osinga R; Tramper J; Wijffels RH
    Mar Biotechnol (NY); 1999 Nov; 1(6):509-532. PubMed ID: 10612677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primmorphs from archaeocytes-dominant cell population of the sponge hymeniacidon perleve: improved cell proliferation and spiculogenesis.
    Zhang X; Cao X; Zhang W; Yu X; Jin M
    Biotechnol Bioeng; 2003 Dec; 84(5):583-90. PubMed ID: 14574692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.
    Lavrov AI; Kosevich IA
    J Exp Zool A Ecol Genet Physiol; 2016 Feb; 325(2):158-77. PubMed ID: 26863993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron.
    Le Pennec G; Perovic S; Ammar MS; Grebenjuk VA; Steffen R; Brümmer F; Müller WE
    J Biotechnol; 2003 Jan; 100(2):93-108. PubMed ID: 12423904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida).
    Rozas EE; Albano RM; Lôbo-Hajdu G; Müller WE; Schröder HC; Custódio MR
    Braz J Microbiol; 2011 Oct; 42(4):1560-8. PubMed ID: 24031790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primmorphs cryopreservation: a new method for long-time storage of sponge cells.
    Mussino F; Pozzolini M; Valisano L; Cerrano C; Benatti U; Giovine M
    Mar Biotechnol (NY); 2013 Jun; 15(3):357-67. PubMed ID: 23151942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiome analysis of healthy and diseased sponges
    Chernogor L; Klimenko E; Khanaev I; Belikov S
    PeerJ; 2020; 8():e9080. PubMed ID: 32518718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive pyrrole alkaloids isolated from the Red Sea: marine sponge Stylissa carteri.
    Hamed ANE; Schmitz R; Bergermann A; Totzke F; Kubbutat M; Müller WEG; Youssef DTA; Bishr MM; Kamel MS; Edrada-Ebel R; Wätjen W; Proksch P
    Z Naturforsch C J Biosci; 2018 Apr; 73(5-6):199-210. PubMed ID: 29353267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable use of marine resources: cultivation of sponges.
    Brümmer F; Nickel M
    Prog Mol Subcell Biol; 2003; 37():143-62. PubMed ID: 15825643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.