These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33948868)

  • 1. Microcirculatory Changes in Pediatric Patients During Congenital Heart Defect Corrective Surgery.
    González Cortés R; Urbano Villaescusa J; Solana García MJ; López González J; Fernández Lafever SN; Ramírez Gómez B; Fuentes Moran JR; Hidalgo García I; Peleteiro Pensado A; Pérez-Caballero Martínez R; Pardo Prado CA; Rodríguez Ogando A; López Blazquez M; López-Herce Cid J
    J Cardiovasc Transl Res; 2021 Dec; 14(6):1173-1185. PubMed ID: 33948868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation of the microvascular glycocalyx and perfusion in infants after cardiopulmonary bypass.
    Nussbaum C; Haberer A; Tiefenthaller A; Januszewska K; Chappell D; Brettner F; Mayer P; Dalla Pozza R; Genzel-Boroviczény O
    J Thorac Cardiovasc Surg; 2015 Dec; 150(6):1474-81.e1. PubMed ID: 26395044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcirculatory Monitoring in Children with Congenital Heart Disease Before and After Cardiac Surgery.
    Erdem Ö; de Graaff JC; Hilty MP; Kraemer US; de Liefde II; van Rosmalen J; Ince C; Tibboel D; Kuiper JW
    J Cardiovasc Transl Res; 2023 Dec; 16(6):1333-1342. PubMed ID: 37450208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcirculatory changes in children undergoing cardiac surgery: a prospective observational study.
    Scolletta S; Marianello D; Isgrò G; Dapoto A; Terranova V; Franchi F; Baryshnikova E; Carlucci C; Ranucci M
    Br J Anaesth; 2016 Aug; 117(2):206-13. PubMed ID: 27440632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Microcirculatory Perfused Vessel Density and High Heterogeneity are Associated With Increased Intensity and Duration of Lactic Acidosis After Cardiac Surgery with Cardiopulmonary Bypass.
    Greenwood JC; Jang DH; Spelde AE; Gutsche JT; Horak J; Acker MA; Kilbaugh TJ; Shofer FS; Augoustides JGT; Bakker J; Abella BS
    Shock; 2021 Aug; 56(2):245-254. PubMed ID: 33394972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular endothelial dysfunction during cardiopulmonary bypass in surgery for correction of cyanotic and acyanotic congenital heart disease.
    Ugenti V; Romano AC; Tibirica E
    Microvasc Res; 2018 Nov; 120():55-58. PubMed ID: 29958862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing the change in cerebral hemodynamics in pediatric patients during and after corrective cardiac surgery of congenital heart diseases by means of full-flow cardiopulmonary bypass.
    Abdul-Khaliq H; Uhlig R; Böttcher W; Ewert P; Alexi-Meskishvili V; Lange PE
    Perfusion; 2002 May; 17(3):179-85. PubMed ID: 12017385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcirculatory Differences in Children With Congenital Heart Disease According to Cyanosis and Age.
    González R; Urbano J; Solana MJ; Hervías M; Pita A; Pérez R; Álvarez R; Teigell E; Gil-Jaurena JM; Zamorano J; Sobrino A; López-Herce J
    Front Pediatr; 2019; 7():264. PubMed ID: 31312623
    [No Abstract]   [Full Text] [Related]  

  • 9. Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass.
    Dekker NAM; Veerhoek D; Koning NJ; van Leeuwen ALI; Elbers PWG; van den Brom CE; Vonk ABA; Boer C
    Anaesthesia; 2019 May; 74(5):609-618. PubMed ID: 30687934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the effects of sevoflurane, isoflurane, and desflurane on microcirculation in coronary artery bypass graft surgery.
    Özarslan NG; Ayhan B; Kanbak M; Çelebioğlu B; Demircin M; Ince C; Aypar Ü
    J Cardiothorac Vasc Anesth; 2012 Oct; 26(5):791-8. PubMed ID: 22592139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics.
    Koning NJ; Vonk AB; van Barneveld LJ; Beishuizen A; Atasever B; van den Brom CE; Boer C
    J Appl Physiol (1985); 2012 May; 112(10):1727-34. PubMed ID: 22403352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of sublingual microcirculation in a paediatric intensive care unit: prospective observational study about its feasibility and utility.
    González R; López J; Urbano J; Solana MJ; Fernández SN; Santiago MJ; López-Herce J
    BMC Pediatr; 2017 Mar; 17(1):75. PubMed ID: 28298202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of sublingual microcirculatory changes during the early postoperative period following cardiopulmonary bypass-assisted cardiac surgery-a prospective cohort study.
    Li X; Tan T; Wu H; Zhang C; Luo D; Zhu W; Li B; Zhuang J
    J Thorac Dis; 2022 Oct; 14(10):3992-4002. PubMed ID: 36389306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of functional fibrinogen thromboelastography in children undergoing congenital heart surgery.
    Gautam NK; Cai C; Pawelek O; Rafique MB; Cattano D; Pivalizza EG
    Paediatr Anaesth; 2017 Feb; 27(2):181-189. PubMed ID: 27901294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study.
    den Uil CA; Lagrand WK; Spronk PE; van Domburg RT; Hofland J; Lüthen C; Brugts JJ; van der Ent M; Simoons ML
    J Thorac Cardiovasc Surg; 2008 Jul; 136(1):129-34. PubMed ID: 18603065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bradykinin and histamine generation with generalized enhancement of microvascular permeability in neonates, infants, and children undergoing cardiopulmonary bypass surgery.
    Neuhof C; Walter O; Dapper F; Bauer J; Zickmann B; Fink E; Tillmanns H; Neuhof H
    Pediatr Crit Care Med; 2003 Jul; 4(3):299-304. PubMed ID: 12831410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive measurement of renal perfusion and oxygen metabolism to predict postoperative acute kidney injury in neonates and infants after cardiopulmonary bypass surgery.
    Neunhoeffer F; Wiest M; Sandner K; Renk H; Heimberg E; Haller C; Kumpf M; Schlensak C; Hofbeck M
    Br J Anaesth; 2016 Nov; 117(5):623-634. PubMed ID: 27799177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combined effects of the microcirculatory status and cardiopulmonary bypass on platelet count and function during cardiac surgery.
    Di Dedda U; Ranucci M; Porta A; Bari V; Ascari A; Fantinato A; Baryshnikova E; Cotza M
    Clin Hemorheol Microcirc; 2018; 70(3):327-337. PubMed ID: 29710690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcirculatory blood flow during cardiac arrest and cardiopulmonary resuscitation does not correlate with global hemodynamics: an experimental study.
    Krupičková P; Mlček M; Huptych M; Mormanová Z; Bouček T; Belza T; Lacko S; Černý M; Neužil P; Kittnar O; Linhart A; Bělohlávek J
    J Transl Med; 2016 Jun; 14(1):163. PubMed ID: 27277706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcirculatory perfusion disturbances following cardiopulmonary bypass: a systematic review.
    den Os MM; van den Brom CE; van Leeuwen ALI; Dekker NAM
    Crit Care; 2020 May; 24(1):218. PubMed ID: 32404120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.