BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33948930)

  • 1. Macroevolutionary history predicts flowering time but not phenological sensitivity to temperature in grasses.
    Neto-Bradley BM; Whitton J; Lipsen LPJ; Pennell MW
    Am J Bot; 2021 May; 108(5):893-902. PubMed ID: 33948930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community.
    CaraDonna PJ; Inouye DW
    Ecology; 2015 Feb; 96(2):355-61. PubMed ID: 26240857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate warming-driven phenological shifts are species-specific in woody plants: evidence from twig experiment in Kashmir Himalaya.
    Hassan T; Ahmad R; Wani SA; Gulzar R; Waza SA; Khuroo AA
    Int J Biometeorol; 2022 Aug; 66(9):1771-1785. PubMed ID: 35759146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range.
    Love NLR; Mazer SJ
    Am J Bot; 2021 Oct; 108(10):1873-1888. PubMed ID: 34642935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate drives shifts in grass reproductive phenology across the western USA.
    Munson SM; Long AL
    New Phytol; 2017 Mar; 213(4):1945-1955. PubMed ID: 27870060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extirpated prairie species demonstrate more variable phenological responses to warming than extant congeners.
    Zettlemoyer MA; Renaldi K; Muzyka MD; Lau JA
    Am J Bot; 2021 Jun; 108(6):958-970. PubMed ID: 34133754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Old Plants, New Tricks: Phenological Research Using Herbarium Specimens.
    Willis CG; Ellwood ER; Primack RB; Davis CC; Pearson KD; Gallinat AS; Yost JM; Nelson G; Mazer SJ; Rossington NL; Sparks TH; Soltis PS
    Trends Ecol Evol; 2017 Jul; 32(7):531-546. PubMed ID: 28465044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenological displacement is uncommon among sympatric angiosperms.
    Park DS; Breckheimer IK; Ellison AM; Lyra GM; Davis CC
    New Phytol; 2022 Feb; 233(3):1466-1478. PubMed ID: 34626123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating phenological sensitivity in contemporary vs. historical data sets: Effects of climate resolution and spatial scale.
    Zettlemoyer MA; Wilson JE; DeMarche ML
    Am J Bot; 2022 Dec; 109(12):1981-1990. PubMed ID: 36321486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.
    Du Y; Chen J; Willis CG; Zhou Z; Liu T; Dai W; Zhao Y; Ma K
    Ecol Evol; 2017 Sep; 7(17):6747-6757. PubMed ID: 28904756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net.
    Park IW; Mazer SJ
    Glob Chang Biol; 2018 Dec; 24(12):5972-5984. PubMed ID: 30218548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences.
    Hassan T; Hamid M; Wani SA; Malik AH; Waza SA; Khuroo AA
    Sci Total Environ; 2021 Nov; 795():148811. PubMed ID: 34246140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shifts in flowering phenology in response to spring temperatures in eastern Tennessee.
    Faidiga AS; Oliver MG; Budke JM; Kalisz S
    Am J Bot; 2023 Aug; 110(8):e16203. PubMed ID: 37327370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
    Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC
    Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex-dependent phenological responses to climate vary across species' ranges.
    Xie Y; Thammavong HT; Berry LG; Huang CH; Park DS
    Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2306723120. PubMed ID: 37956437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.