BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33948930)

  • 41. CrowdCurio: an online crowdsourcing platform to facilitate climate change studies using herbarium specimens.
    Willis CG; Law E; Williams AC; Franzone BF; Bernardos R; Bruno L; Hopkins C; Schorn C; Weber E; Park DS; Davis CC
    New Phytol; 2017 Jul; 215(1):479-488. PubMed ID: 28394023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic.
    Lessard-Therrien M; Davies TJ; Bolmgren K
    Int J Biometeorol; 2014 May; 58(4):455-62. PubMed ID: 23686022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment.
    Wadgymar SM; Ogilvie JE; Inouye DW; Weis AE; Anderson JT
    New Phytol; 2018 Apr; 218(2):517-529. PubMed ID: 29451307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.
    Iler AM; Inouye DW; Schmidt NM; Høye TT
    Ecology; 2017 Mar; 98(3):647-655. PubMed ID: 27984645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial heterogeneity of first flowering date in Beijing's main urban area and its response to urban thermal environment.
    Xing X; Zhang M; Li K; Hao P; Dong L
    Int J Biometeorol; 2022 Oct; 66(10):1929-1954. PubMed ID: 36048247
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.
    Cortés-Flores J; Hernández-Esquivel KB; González-Rodríguez A; Ibarra-Manríquez G
    Am J Bot; 2017 Jan; 104(1):39-49. PubMed ID: 28031168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.
    Kharouba HM; Vellend M
    J Anim Ecol; 2015 Sep; 84(5):1311-21. PubMed ID: 25823582
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States.
    Park DS; Breckheimer I; Williams AC; Law E; Ellison AM; Davis CC
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455212
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A decade of flowering phenology of the keystone saguaro cactus (Carnegiea gigantea).
    Renzi JJ; Peachey WD; Gerst KL
    Am J Bot; 2019 Feb; 106(2):199-210. PubMed ID: 30791093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flowering phenological changes in relation to climate change in Hungary.
    Szabó B; Vincze E; Czúcz B
    Int J Biometeorol; 2016 Sep; 60(9):1347-56. PubMed ID: 26768142
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Geographic conditions impact the relationship between plant phenology and phylogeny.
    Shahzad K; Alatalo JM; Zhu M; Cao L; Hao Y; Dai J
    Sci Total Environ; 2024 Oct; 945():174083. PubMed ID: 38906301
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates.
    Bolmgren K; Vanhoenacker D; Miller-Rushing AJ
    Int J Biometeorol; 2013 May; 57(3):367-75. PubMed ID: 22744801
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
    Munson SM; Sher AA
    Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fast and Cheap in the Fall: Phylogenetic determinants of late flowering phenologies in Himalayan Rhododendron.
    Hart R; Georgian EM; Salick J
    Am J Bot; 2016 Feb; 103(2):198-206. PubMed ID: 26851266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Forest wildflowers bloom earlier as Europe warms: lessons from herbaria and spatial modelling.
    Willems FM; Scheepens JF; Bossdorf O
    New Phytol; 2022 Jul; 235(1):52-65. PubMed ID: 35478407
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatio-temporal flowering patterns in Mediterranean Poaceae. A community study in SW Spain.
    Cebrino J; García-Castaño JL; Domínguez-Vilches E; Galán C
    Int J Biometeorol; 2018 Apr; 62(4):513-523. PubMed ID: 28988310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phenological advance in the South African Namaqualand Daisy First and Peak Bloom: 1935-2018.
    Snyman PL; Fitchett JM
    Int J Biometeorol; 2022 Apr; 66(4):699-717. PubMed ID: 34994844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.
    Kopp CW; Cleland EE
    PLoS One; 2015; 10(9):e0139029. PubMed ID: 26402617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The evolution of flowering phenology: an example from the wind-pollinated African Restionaceae.
    Linder HP
    Ann Bot; 2020 Nov; 126(7):1141-1153. PubMed ID: 32761162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.